pt100和ds18b20

时间: 2024-06-19 13:03:12 浏览: 230
PT100和DS18B20都是温度传感器,可以用于测量温度。其中PT100是一种热电阻传感器,常用于高精度测量场合,如实验室、工业生产等领域。它的原理是利用铂电阻的温度系数进行测量,具有高精度、长寿命、线性良好等特点。而DS18B20则是一种数字温度传感器,具有体积小、精度高、使用方便等优点,常用于智能家居、智能化生产等领域。
相关问题

PT100温度采集与DS18B20温度采集的优缺点

PT100温度传感器和DS18B20温度传感器都是常用的温度采集器件,它们有各自的优缺点。 PT100温度传感器是一种基于电阻变化原理的温度传感器,其优点是具有较高的精度和稳定性,并且适用于较高的温度范围。但是,PT100温度传感器需要外部电路进行放大和线性化处理,因此需要更复杂的电路设计和更高的成本。 DS18B20温度传感器是一种数字温度传感器,其优点是具有较小的体积和较低的成本,并且可以直接与微控制器进行通信。而且,DS18B20温度传感器具有较好的抗干扰能力和较低的功耗,对于某些应用场景非常适用。但是,DS18B20温度传感器的精度和稳定性相对较低,适用温度范围也相对较窄。 综上所述,选择PT100温度传感器还是DS18B20温度传感器需要根据具体的应用场景来选择,需要权衡各自的优缺点来做出决策。

基于51单片机PT100热敏电阻温度计的代码

以下是基于51单片机的PT100热敏电阻温度计的代码: ``` #include <reg51.h> #include <intrins.h> #define uchar unsigned char #define uint unsigned int sbit DQ = P1^0; // 定义DS18B20数据线 uchar code table[] = {0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f}; // 数码管显示表 uchar tempH, tempL; // 温度值的高位和低位 uchar temp; // 温度值 void delay(uint ms) { // 延时函数 uint i, j; for (i = 0; i < ms; i++) { for (j = 0; j < 110; j++); } } void init_ds18b20() { // 初始化DS18B20 uchar i; DQ = 1; delay(1); DQ = 0; delay(500); DQ = 1; delay(60); i = DQ; delay(500); } void write_byte(uchar dat) { // 写一个字节 uchar i; for (i = 0; i < 8; i++) { DQ = 0; _nop_(); DQ = dat & 0x01; delay(5); DQ = 1; dat >>= 1; } } uchar read_byte() { // 读一个字节 uchar i, dat = 0; for (i = 0; i < 8; i++) { dat >>= 1; DQ = 0; _nop_(); DQ = 1; if (DQ) { dat |= 0x80; } delay(5); } return dat; } void read_temp() { // 读取温度值 init_ds18b20(); write_byte(0xcc); // 跳过ROM操作 write_byte(0x44); // 启动温度转换 delay(100); init_ds18b20(); write_byte(0xcc); // 跳过ROM操作 write_byte(0xbe); // 读取温度寄存器 tempL = read_byte(); // 读取低位 tempH = read_byte(); // 读取高位 temp = (tempH << 8) | tempL; // 合成温度值 } void main() { while (1) { read_temp(); temp = temp * 0.0625; // 转换为实际温度值 P2 = table[temp / 10]; // 显示十位 P3 = 0xfe; // 选中个位 delay(1); P3 = 0xff; // 取消选中 P2 = table[temp % 10]; // 显示个位 P3 = 0xfd; // 选中十位 delay(1); P3 = 0xff; // 取消选中 } } ``` 以上代码中,使用了DS18B20来测量温度,并将温度值显示在数码管上。代码中使用了位运算来处理数据的高位和低位,以及将温度值乘上0.0625来转换为实际温度值。同时,使用了延时函数来控制数码管的刷新频率。
阅读全文

相关推荐

text/x-c
DS18B20温度传感器 * * C51 * * yajou 2008-06-28 无CRC * ********************************************************/ #include "reg51.h" #include "intrins.h" #include "DS18B20.h" /******************************************************** * us延时程序 * ********************************************************/ void Delayus(uchar us) { while(us--); //12M,一次6us,加进入退出14us(8M晶振,一次9us) } /******************************************************** * DS18B20初始化 * ********************************************************/ bit Ds18b20_Init(void) //存在返0,否则返1 { bit temp = 1; uchar outtime = ReDetectTime; //超时时间 while(outtime-- && temp) { Delayus(10); //(250)1514us时间可以减小吗 ReleaseDQ(); Delay2us(); PullDownDQ(); Delayus(100); //614us(480-960) ReleaseDQ(); Delayus(10); //73us(>60) temp = dq; Delayus(70); //us } return temp; } /******************************************************** * 写bit2DS18B20 * ********************************************************/ void Ds18b20_WriteBit(bit bitdata) { if(bitdata) { PullDownDQ(); Delay2us(); //2us(>1us) ReleaseDQ(); //(上述1-15) Delayus(12); //86us(45- x,总时间>60) }else { PullDownDQ(); Delayus(12); //86us(60-120) } ReleaseDQ(); Delay2us(); //2us(>1us) } /******************************************************** * 写Byte DS18B20 * ********************************************************/ void Ds18b20_WriteByte(uchar chrdata) { uchar ii; for(ii = 0; ii < 8; ii++) { Ds18b20_WriteBit(chrdata & 0x01); chrdata >>= 1; } } /******************************************************** * 写 DS18B20 * ********************************************************/ //void Ds18b20_Write(uchar *p_readdata, uchar bytes) //{ // while(bytes--) // { // Ds18b20_WriteByte(*p_readdata); // p_readdata++; // } //} /******************************************************** * 读bit From DS18B20 * ********************************************************/ bit Ds18b20_ReadBit(void) { bit bitdata; PullDownDQ(); Delay2us(); //2us( >1us) ReleaseDQ(); Delay8us(); //8us( <15us) bitdata = dq; Delayus(7); //86us(上述总时间要>60us) return bitdata; } /******************************************************** * 读Byte DS18B20 * ********************************************************/ uchar Ds18b20_ReadByte(void) { uchar ii,chardata; for(ii = 0; ii < 8; ii++) { chardata >>= 1; if(Ds18b20_ReadBit()) chardata |= 0x80; } return chardata; } /******************************************************** * 读 DS18B20 ROM * ********************************************************/ bit Ds18b20_ReadRom(uchar *p_readdata) //成功返0,失败返1 { uchar ii = 8; if(Ds18b20_Init()) return 1; Ds18b20_WriteByte(ReadROM); while(ii--) { *p_readdata = Ds18b20_ReadByte(); p_readdata++; } return 0; } /******************************************************** * 读 DS18B20 EE * ********************************************************/ bit Ds18b20_ReadEE(uchar *p_readdata) //成功返0,失败返1 { uchar ii = 2; if(Ds18b20_Init()) return 1; Ds18b20_WriteByte(SkipROM); Ds18b20_WriteByte(ReadScr); while(ii--) { *p_readdata = Ds18b20_ReadByte(); p_readdata++; } return 0; } /******************************************************** * 温度采集计算 * ********************************************************/ bit TempCal(float *p_wendu) //成功返0,失败返1 (温度范围-55 --- +128) { uchar temp[9],ii; uint tmp; float tmpwendu; TR1 = 0; TR0 = 0; //读暂存器和CRC值----------------------- if(Ds18b20_ReadEE(temp)) { TR1 = 1; TR0 = 1; return 1; } //------------------------------------- //CRC校验------------------------------ // //此处应加入CRC校验等 // // //------------------------------------- //使温度值写入相应的wendu[i]数组中----- for(ii = i; ii > 0; ii--) { p_wendu++; } i++; if(i > 4) i = 0; //------------------------------------- //温度正负数处理----------------------- // //------------------------------------- //温度计算----------------------------- tmp = temp[1]; // tmp <<= 8; // tmp |= temp[0]; //组成温度的两字节合并 tmpwendu = tmp; *p_wendu = tmpwendu / 16; //------------------------------------- //开始温度转换------------------------- if(Ds18b20_Init()) { TR1 = 1; TR0 = 1; return 1; } Ds18b20_WriteByte(SkipROM); Ds18b20_WriteByte(Convert); ReleaseDQ(); //寄生电源时要拉高DQ //------------------------------------ TR1 = 1; TR0 = 1; return 0; } //////////DS18B20.h///////////////////////// /******************************************************** * I/O口定义 * ********************************************************/ sbit dq = P1^3; sbit dv = P1^4; //DS18B20强上拉电源 /******************************************************** * 命令字定义 * ********************************************************/ #define uchar unsigned char #define uint unsigned int #define ReleaseDQ() dq = 1; //上拉/释放总线 #define PullDownDQ() dq = 0; //下拉总线 #define Delay2us() _nop_();_nop_(); //延时2us,每nop 1us #define Delay8us() _nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_(); //设置重复检测次次数,超出次数则超时 #define ReDetectTime 20 //ds18b20命令 #define SkipROM 0xCC #define MatchROM 0x55 #define ReadROM 0x33 #define SearchROM 0xF0 #define AlarmSearch 0xEC #define Convert 0x44 #define WriteScr 0x4E #define ReadScr 0xBE #define CopyScr 0x48 #define RecallEE 0xB8 #define ReadPower 0xB4 /******************************************************** * 函数 * ********************************************************/ void Delayus(uchar us); //void Dog(void); bit Ds18b20_Init(void); //DS18B20初始化,存在返0,否则返1 void Ds18b20_WriteBit(bit bitdata); //写bit2DS18B20 void Ds18b20_WriteByte(uchar chrdata); //写Byte DS18B20 void Ds18b20_Write(uchar *p_readdata, uchar bytes); //写 DS18B20 bit Ds18b20_ReadBit(void); //读bit From DS18B20 uchar Ds18b20_ReadByte(void); //读Byte DS18B20 bit Ds18b20_ReadRom(uchar *p_readdata); //读 DS18B20 ROM:成功返0,失败返1 bit Ds18b20_ReadEE(uchar *p_readdata); //读 DS18B20 EE :成功返0,失败返1 bit TempCal(float *p_wendu); //成功返0,失败返1 (温度范围-55 --- +128) [目录] 第一章 前言 第二章 设计方案 第三章 数字温度传感器芯片特性 第四章 AT89S52单片机简介 第五章 单片机驱动蜂鸣器原理 第六章 单片机驱动继电器原理 第七章 按键设计 第八章 数码管显示电路 附录 1.源程序 2.电路图 [摘要] 应用数字温度传感器DS18B20设计的智能温度控制系统,实现方便、精度高、功耗低、微型化、抗干扰能力强,可根据不同需要用于各种温度监控及其他各种温度测控系统中。简单的外围电路主要依靠单片机的程序控制,实现温度的实时采集与比较,温度值的十进制数转换,-55°C ~125°C实时的温度显示及上下限温度值显示,键盘对上下限温度的设定,各种数据处理及报警温度的判断,单片机对继电器的驱动实现相应的加热、制冷控制。 在单片机程序的控制下,新一代的可编程数字温度传感器DS18B20完成其温度的转化和相应的数据处理与比较;选择简单的独立式按键,简化程序。大量应用PNP三极管的开关作用和电流的放大作用,实现单片机I/O口小电流的TTL电平对外围器件的控制。加热、制冷电机启动指示灯及各种保护,恒温指示灯,和各种报警声构成人性化智能温控系统。 [正文] 第一章 前言 本论文介绍单片机结合DS18B20设计的智能温度控制系统,系统用一种新型的“一总线”可编程数字温度传感器(DS18B20),不需复杂的信号调理电路和A/D转换电路能直接与单片机完成数据采集和处理,实现方便、精度高、功耗低、微型化、抗干扰能力强,可根据不同需要用于各种温度监控及其他各种温度测控系统中。 美国DALLAS最新单线数字温度传感器DS18B20,具有微型化低功耗、高性能、可组网等优点,新的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持 “一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20的测温分辨率较高,DS18B20可直接将温度转化成串行数字信号,因此特别适合和单片机配合使用,直接读取温度数据。目前DS18B20数字温度传感器已经广泛应用于恒温室、粮库、计算机机房。测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,误差为±0.5°C。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20可以程序设定9~12位的分辨率,精度为0.0625°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS18B20使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。传统的测温元件测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持,电路复杂,软件调试复杂,制作成本高。所以本人改用一种智能传感器DS18B20作为检测元件,可以直接读出被测温度值。1线制与单片机相连,减少了外部硬件电路,具有低成本和易使用的特点。 [参考文献] [1] 童诗白、华成英.模拟电子技术基础.高等教育出版社,2000 [2] 阉石.数字电子技术基础.高等教育出版社,1998 [3] 李朝青.单片机原理与接口技术.北京航空航天大学出版社,2000 [4] 楼然苗、李光飞.单片机课程设计指导.电子工业出版社,2007 [5] Intel. MCS-51 Family of Single Chip Microcomputers User’s Manual.1990 [6] Keil Software Company. Cx51 Compiler User’s Guide. 2001 [7] 李群芳.单片机微型计算机与接口技术.电子工业出版社,1997 [8] 全国大学生电子设计竞赛——1994年获奖作品选编 [9] 肖忠祥.数据采集原理.西北工业大学出版社,2001 [10] ATMEL公司 AT89S52的技术手册 [11] 吴金戌、沈庆阳、郭庭吉.单片机实践与应用.北京:清华大学出版社 [12] 王为青、邱文勋.51单片机应用开发案例精选.人民邮电出版社,2007  TS-18B20 数字温度传感器(www.ftco01.cn)   本公司最新推出TS-18B20数字温度传感器,该产品采用美国DALLAS公司生产的 DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。   1: 技术性能描述   1.1 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。   1.2 测温范围 -55℃~+125℃,固有测温分辨率0.5℃。   1.3 支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现多点测温   1.4 工作电源: 3~5V/DC   1.5 在使用中不需要任何外围元件   1.6 测量结果以9~12位数字量方式串行传送   1.7 不锈钢保护管直径 Φ6   1.8 适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温   1.9 标准安装螺纹 M10X1, M12X1.5, G1/2”任选   1.10 PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。   2:应用范围   2.1 该产品适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域   2.2 轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制。   2.3 汽车空调、冰箱、冷柜、以及中低温干燥箱等。   2.5 供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制   3:产品型号与规格   型 号 测温范围 安装螺纹 电缆长度 适用管道   TS-18B20 -55~125 无 1.5 m   TS-18B20A -55~125 M10X1 1.5m DN15~25   TS-18B20B -55~125 1/2”G 接线盒 DN40~ 60   4:接线说明   特点 独特的一线接口,只需要一条口线通信 多点能力,简化了分布式温度传感应用 无需外部元件 可用数据总线供电,电压范围为3.0 V至5.5 V 无需备用电源 测量温度范围为-55 ° C至+125 ℃ 。华氏相当于是-67 ° F到257华氏度 -10 ° C至+85 ° C范围内精度为±0.5 ° C   温度传感器可编程的分辨率为9~12位 温度转换为12位数字格式最大值为750毫秒 用户可定义的非易失性温度报警设置 应用范围包括恒温控制,工业系统,消费电子产品温度计,或任何热敏感系统   描述该DS18B20的数字温度计提供9至12位(可编程设备温度读数。信息被发送到/从DS18B20 通过1线接口,所以中央微处理器与DS18B20只有一个一条口线连接。为读写以及温度转换可以从数据线本身获得能量,不需要外接电源。 因为每一个DS18B20的包含一个独特的序号,多个ds18b20s可以同时存在于一条总线。这使得温度传感器放置在许多不同的地方。它的用途很多,包括空调环境控制,感测建筑物内温设备或机器,并进行过程监测和控制。   8引脚封装 TO-92封装 用途 描述   5 1 接地 接地   4 2 数字 信号输入输出,一线输出:源极开路   3 3 电源 可选电源管脚。见"寄生功率"一节细节方面。电源必须接地,为行动中,寄生虫功率模式。   不在本表中所有管脚不须接线 。   概况框图图1显示的主要组成部分DS18B20的。DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。该装置信号线高的时候,内部电容器 储存能量通由1线通信线路给片子供电,而且在低电平期间为片子供电直至下一个高电平的到来重新充电。 DS18B20的电源也可以从外部3V-5 .5V的电压得到。   DS18B20采用一线通信接口。因为一线通信接口,必须在先完成ROM设定,否则记忆和控制功能将无法使用。主要首先提供以下功能命令之一: 1 )读ROM, 2 )ROM匹配, 3 )搜索ROM, 4 )跳过ROM, 5 )报警检查。这些指令操作作用在没有一个器件的64位光刻ROM序列号,可以在挂在一线上多个器件选定某一个器件,同时,总线也可以知道总线上挂有有多少,什么样的设备。   若指令成功地使DS18B20完成温度测量,数据存储在DS18B20的存储器。一个控制功能指挥指示DS18B20的演出测温。测量结果将被放置在DS18B20内存中,并可以让阅读发出记忆功能的指挥,阅读内容的片上存储器。温度报警触发器TH和TL都有一字节EEPROM 的数据。如果DS18B20不使用报警检查指令,这些寄存器可作为一般的用户记忆用途。在片上还载有配置字节以理想的解决温度数字转换。写TH,TL指令以及配置字节利用一个记忆功能的指令完成。通过缓存器读寄存器。所有的数据都读,写都是从最低位开始。   DS18B20有4个主要的数据部件:   (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。   (2) DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。   表1 DS18B20温度值格式表   4.3.1   DS18B20的管脚排列如图4.4所示。   图4.4DS18B20的管脚排列如图   DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,温度报警触发器TH和TL,配置寄存器。DS18B20内部结构图如图4.5所示。   图4.5 DS18B20内部结构图   4.3.2存储器   DS18B20的存储器包括高速暂存器RAM和可电擦除RAM,可电擦除RAM又包括温度触发器TH和TL,以及一个配置寄存器。存储器能完整的确定一线端口的通讯,数字开始用写寄存器的命令写进寄存器,接着也可以用读寄存器的命令来确认这些数字。当确认以后就可以用复制寄存器的命令来将这些数字转移到可电擦除RAM中。当修改过寄存器中的数时,这个过程能确保数字的完整性。   高速暂存器RAM是由8个字节的存储器组成;第一和第二个字节是温度的显示位。第三和第四个字节是复制TH和TL,同时第三和第四个字节的数字可以更新;第五个字节是复制配置寄存器,同时第五个字节的数字可以更新;六、七、八三个字节是计算机自身使用。用读寄存器的命令能读出第九个字节,这个字节是对前面的八个字节进行校验。存储器的结构图如图4.6所示。   图4.6 存储器的结构图   4.3.3 64-位光刻ROM   64位光刻ROM的前8位是DS18B20的自身代码,接下来的48位为连续的数字代码,最后的8位是对前56位的CRC校验。64-位的光刻ROM又包括5个ROM的功能命令:读ROM,匹配ROM,跳跃ROM,查找ROM和报警查找。64-位光刻ROM的结构图如图4.7所示。   图4.7位64-位光刻ROM的结构图   4.3.4 DS18B20外部电源的连接方式   DS18B20可以使用外部电源VDD,也可以使用内部的寄生电源。当VDD端口接3.0V—5.5V的电压时是使用外部电源;当VDD端口接地时使用了内部的寄生电源。无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。 连接图如图4.8、图4.9所示。   图4.8 使用寄生电源的连接图   图4.9外接电源的连接图   4.3.4 DS18B20温度处理过程   4.3.4.1配置寄存器   配置寄存器是配置不同的位数来确定温度和数字的转化。配置寄存器的结构图如图4.10所示。   图4.10 配置寄存器的结构图   由图4.9可以知道R1,R0是温度的决定位,由R1,R0的不同组合可以配置为9位,10位,11位,12位的温度显示。这样就可以知道不同的温度转化位所对应的转化时间,四种配置的分辨率分别为0.5℃,0.25℃,0.125℃和0.0625℃,出厂时以配置为12位。温度的决定配置图如图8所示。   图4.11 温度的决定配置图   4.3.4.2 温度的读取   DS18B20在出厂时以配置为12位,读取温度时共读取16位,所以把后11位的2进制转化为10进制后在乘以0.0625便为所测的温度,还需要判断正负。前5个数字为符号位,当前5位为1时,读取的温度为负数;当前5位为0时,读取的温度为正数。16位数字摆放是从低位到高位,温度的关系图如图4.12所示。   图4.12为温度的关系图   4.3.4.3.DS18B20控制方法   DS18B20有六条控制命令,如表4.1所示:   表4.1 为DS18B20有六条控制命令   指 令 约定代码 操 作 说 明   温度转换 44H 启动DS18B20进行温度转换   读暂存器 BEH 读暂存器9个字节内容   写暂存器 4EH 将数据写入暂存器的TH、TL字节   复制暂存器 48H 把暂存器的TH、TL字节写到E2RAM中   重新调E2RAM B8H 把E2RAM中的TH、TL字节写到暂存器TH、TL字节   读电源供电方式 B4H 启动DS18B20发送电源供电方式的信号给主CPU   4.3.4.4 DS18B20的初始化   (1) 先将数据线置高电平“1”。   (2) 延时(该时间要求的不是很严格,但是尽可能的短一点)   (3) 数据线拉到低电平“0”。   (4) 延时750微秒(该时间的时间范围可以从480到960微秒)。   (5) 数据线拉到高电平“1”。   (6) 延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。   (7) 若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。   (8) 将数据线再次拉高到高电平“1”后结束。   其时序如图4.13所示:   图4.13 初始化时序图   4.3.4.5 DS18B20的写操作   (1) 数据线先置低电平“0”。   (2) 延时确定的时间为15微秒。   (3) 按从低位到高位的顺序发送字节(一次只发送一位)。   (4) 延时时间为45微秒。   (5) 将数据线拉到高电平。   (6) 重复上(1)到(6)的操作直到所有的字节全部发送完为止。   (7) 最后将数据线拉高。   DS18B20的写操作时序图如图4.14所示。   图4.14 DS18B20的写操作时序图   4.3.4.6 DS18B20的读操作   (1)将数据线拉高“1”。   (2)延时2微秒。   (3)将数据线拉低“0”。   (4)延时15微秒。   (5)将数据线拉高“1”。   (6)延时15微秒。   (7)读数据线的状态得到1个状态位,并进行数据处理。   (8)延时30微秒。   DS18B20的读操作时序图如图4.15所示。   图1.15 DS18B20的读操作图

最新推荐

recommend-type

设计高精度PT100影响因素

设计高精度PT100温度传感器是一个复杂的过程,涉及到多个关键因素,这些因素共同决定了传感器的性能和测量结果的准确性。以下是对这些因素的详细解释: 1. **传感器芯片选择**:PT100芯片的等级是决定其精度的关键...
recommend-type

pt100温度传感器电路

综上所述,PT100温度传感器电路通过精确的硬件设计和软件算法,实现了对温度的高效、准确测量。该电路利用单片机的A/D转换和软件校正功能,克服了简单电路设计可能带来的非线性误差,确保了在宽温范围内测量的精确性...
recommend-type

pt100温度传感器电路图

**pt100温度传感器**是一种广泛应用于工业过程温度测量的设备,它的主要功能是将温度变化转换为标准电信号,便于数据传输和控制。pt100传感器基于铂电阻原理,其电阻值随温度变化而变化,尤其在0℃时,电阻值为100...
recommend-type

PT100高精度温度巡检仪

【PT100高精度温度巡检仪】是一种基于单片机技术的多通道温度监测设备,主要用于在工业生产和实验研究中实现精确的温度测量。该系统的核心在于使用了8个PT100铂电阻传感器作为温度采集元件,PT100是一种常见的温度...
recommend-type

PT100应用电路及例子

1. PT100 是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至 650℃ 的范围。 2. 本电路选择 PT100 工作在 -19℃ 至 500℃ 范围,以满足不同的应用需求。 3. 整个电路分为两部分,一是传感器...
recommend-type

SSM Java项目:StudentInfo 数据管理与可视化分析

资源摘要信息:"StudentInfo 2.zip文件是一个压缩包,包含了多种数据可视化和数据分析相关的文件和代码。根据描述,此压缩包中包含了实现人员信息管理系统的增删改查功能,以及生成饼图、柱状图、热词云图和进行Python情感分析的代码或脚本。项目使用了SSM框架,SSM是Spring、SpringMVC和MyBatis三个框架整合的简称,主要应用于Java语言开发的Web应用程序中。 ### 人员增删改查 人员增删改查是数据库操作中的基本功能,通常对应于CRUD(Create, Retrieve, Update, Delete)操作。具体到本项目中,这意味着实现了以下功能: - 增加(Create):可以向数据库中添加新的人员信息记录。 - 查询(Retrieve):可以检索数据库中的人员信息,可能包括基本的查找和复杂的条件搜索。 - 更新(Update):可以修改已存在的人员信息。 - 删除(Delete):可以从数据库中移除特定的人员信息。 实现这些功能通常需要编写相应的后端代码,比如使用Java语言编写服务接口,然后通过SSM框架与数据库进行交互。 ### 数据可视化 数据可视化部分包括了生成饼图、柱状图和热词云图的功能。这些图形工具可以直观地展示数据信息,帮助用户更好地理解和分析数据。具体来说: - 饼图:用于展示分类数据的比例关系,可以清晰地显示每类数据占总体数据的比例大小。 - 柱状图:用于比较不同类别的数值大小,适合用来展示时间序列数据或者不同组别之间的对比。 - 热词云图:通常用于文本数据中,通过字体大小表示关键词出现的频率,用以直观地展示文本中频繁出现的词汇。 这些图表的生成可能涉及到前端技术,如JavaScript图表库(例如ECharts、Highcharts等)配合后端数据处理实现。 ### Python情感分析 情感分析是自然语言处理(NLP)的一个重要应用,主要目的是判断文本的情感倾向,如正面、负面或中立。在这个项目中,Python情感分析可能涉及到以下几个步骤: - 文本数据的获取和预处理。 - 应用机器学习模型或深度学习模型对预处理后的文本进行分类。 - 输出情感分析的结果。 Python是实现情感分析的常用语言,因为有诸如NLTK、TextBlob、scikit-learn和TensorFlow等成熟的库和框架支持相关算法的实现。 ### IJ项目与readme文档 "IJ项目"可能是指IntelliJ IDEA项目,IntelliJ IDEA是Java开发者广泛使用的集成开发环境(IDE),支持SSM框架。readme文档通常包含项目的安装指南、运行步骤、功能描述、开发团队和联系方式等信息,是项目入门和理解项目结构的首要参考。 ### 总结 "StudentInfo 2.zip"是一个综合性的项目,涉及到后端开发、前端展示、数据分析及自然语言处理等多个技术领域。通过这个项目,可以学习到如何使用SSM框架进行Web应用开发、实现数据可视化和进行基于Python的情感分析。这对于想要掌握Java Web开发和数据处理能力的学习者来说是一个很好的实践机会。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

负载均衡技术深入解析:确保高可用性的网络服务策略

![负载均衡技术深入解析:确保高可用性的网络服务策略](https://media.geeksforgeeks.org/wp-content/uploads/20240130183502/Source-IP-hash--(1).webp) # 1. 负载均衡技术概述 ## 1.1 负载均衡技术的重要性 在现代信息技术不断发展的今天,互联网应用的规模和服务的复杂性日益增长。因此,为了确保高性能、高可用性和扩展性,负载均衡技术变得至关重要。它能够有效地分配和管理网络或应用程序的流量,使得服务器和网络资源得以最优利用。 ## 1.2 负载均衡技术的基本概念 负载均衡是一种网络流量管理技术,旨
recommend-type

怎么解决头文件重复包含

解决头文件重复包含的问题主要有以下几个策略: 1. **包含 guards**:在头文件开头添加一种特殊的标识符(通常是宏),如 `#ifndef` 和 `#define` 对组合,检查某个特定宏是否已经定义过。如果没有定义,则包含内容,然后设置该宏。如果在同一文件内再次包含,由于宏已经存在,就不会再执行包含的内容,从而避免重复。 ```cpp #ifndef HEADER_NAME_H_ #define HEADER_NAME_H_ // 内容... #endif // HEADER_NAME_H_ ``` 2. **使用 extern 关键字**:对于非静态变量和函数,可以将它们
recommend-type

pyedgar:Python库简化EDGAR数据交互与文档下载

资源摘要信息:"pyedgar:用于与EDGAR交互的Python库" 知识点说明: 1. pyedgar库概述: pyedgar是一个Python编程语言下的开源库,专门用于与美国证券交易委员会(SEC)的电子数据获取、访问和检索(EDGAR)系统进行交互。通过该库,用户可以方便地下载和处理EDGAR系统中公开提供的财务报告和公司文件。 2. EDGAR系统介绍: EDGAR系统是一个自动化系统,它收集、处理、验证和发布美国证券交易委员会(SEC)要求的公司和其他机构提交的各种文件。EDGAR数据库包含了美国上市公司的详细财务报告,包括季度和年度报告、委托声明和其他相关文件。 3. pyedgar库的主要功能: 该库通过提供两个主要接口:文件(.py)和索引,实现了对EDGAR数据的基本操作。文件接口允许用户通过特定的标识符来下载和交互EDGAR表单。索引接口可能提供了对EDGAR数据库索引的访问,以便快速定位和获取数据。 4. pyedgar库的使用示例: 在描述中给出了一个简单的使用pyedgar库的例子,展示了如何通过Filing类与EDGAR表单进行交互。首先需要从pyedgar模块中导入Filing类,然后创建一个Filing实例,其中第一个参数(20)可能代表了提交年份的最后两位,第二个参数是一个特定的提交号码。创建实例后,可以打印实例来查看EDGAR接口的返回对象,通过打印实例的属性如'type',可以获取文件的具体类型(例如10-K),这代表了公司提交的年度报告。 5. Python语言的应用: pyedgar库的开发和应用表明了Python语言在数据分析、数据获取和自动化处理方面的强大能力。Python的简洁语法和丰富的第三方库使得开发者能够快速构建工具以处理复杂的数据任务。 6. 压缩包子文件信息: 文件名称列表中的“pyedgar-master”表明该库可能以压缩包的形式提供源代码和相关文件。文件列表中的“master”通常指代主分支或主版本,在软件开发中,主分支通常包含了最新的代码和功能。 7. 编程实践建议: 在使用pyedgar库之前,建议先阅读官方文档,了解其详细的安装、配置和使用指南。此外,进行编程实践时,应当注意遵守SEC的使用条款,确保只下载和使用公开提供的数据。 8. EDGAR数据的应用场景: EDGAR数据广泛应用于金融分析、市场研究、合规性检查、学术研究等领域。通过编程访问EDGAR数据可以让用户快速获取到一手的财务和公司运营信息,从而做出更加明智的决策。 9. Python库的维护和更新: 随着EDGAR数据库内容的持续更新和变化,pyedgar库也应定期进行维护和更新,以保证与EDGAR系统的接口兼容性。开发者社区对于这类开源项目的支持和贡献也非常重要。 10. 注意事项: 在使用pyedgar库下载和处理数据时,用户应当确保遵守相应的法律法规,尤其是关于数据版权和隐私方面的规定。此外,用户在处理敏感数据时,还需要考虑数据安全和隐私保护的问题。