nn = BPNeuralNetwork(num_input=train_input.shape[1], num_hidden=5, num_output=train_output.shape[1], learning_rate=0.1) nn.train(train_input, train_output, num_epochs=500) def train(self, input_data, output_data, num_epochs): for epoch in range(num_epochs): for i in range(input_data.shape[0]): x = input_data[i] y = output_data[i] self.forward_propagation(x) self.backward_propagation(x, y)
时间: 2024-04-19 17:25:04 浏览: 138
根据你提供的代码片段,我看到你正在创建一个名为 `nn` 的反向传播神经网络(BPNeuralNetwork),并使用它进行训练。
在创建 `nn` 时,你传递了以下参数:
- `num_input`:`train_input` 的第二个维度的长度,用于指定输入层的大小。
- `num_hidden`:5,用于指定隐藏层的大小。
- `num_output`:`train_output` 的第二个维度的长度,用于指定输出层的大小。
- `learning_rate`:0.1,用于指定模型的学习率。
接下来,你调用了 `nn.train(train_input, train_output, num_epochs=500)` 来对模型进行训练。在训练函数中,使用了两个嵌套的循环。外层循环是根据 `num_epochs` 的值进行迭代的训练周期数。
在每个训练周期中,内层循环通过遍历 `input_data` 中的每个样本来进行训练。对于每个样本,你将输入向量 `x` 设置为 `input_data[i]`,将目标输出向量 `y` 设置为 `output_data[i]`。
然后,调用了 `self.forward_propagation(x)` 进行前向传播,将输入向量 `x` 传递给模型,并计算出模型的预测值。
接下来,调用了 `self.backward_propagation(x, y)` 进行反向传播,根据模型的预测值和目标输出向量 `y`,计算并更新模型的参数。
通过这种方式,模型在每个训练周期中根据输入数据和输出数据进行前向传播和反向传播,以优化模型的参数,使其能够更好地拟合训练数据。
如果你有任何进一步的问题,请随时提问。
阅读全文