import cv2 import random import numpy as np img=cv2.imread("D:/CV_data/test/resize/1.jpg") percent =rand_point_percent=0.03 num = int(percent * img.shape[0] * img.shape[1]) for i in range(num): rand_x = random.randint(0, img.shape[0] - 1) rand_y = random.randint(0, img.shape[1] - 1) if random.randint(0, 1) == 0: img[rand_x, rand_y] = 0 else: img[rand_x, rand_y] = 255 cv2.imshow("output",img) cv2.waitKey() cv2.destroyAllWindows()
时间: 2024-04-18 15:23:45 浏览: 156
这段代码使用了OpenCV库进行图像处理。首先,通过cv2.imread函数读取了一张图片。然后,定义了一个变量percent表示随机点的比例,rand_point_percent表示随机点的比例。接着,计算了需要生成的随机点的数量num。然后,通过循环生成num个随机点,其中rand_x和rand_y分别表示随机点的横坐标和纵坐标。通过random.randint函数生成0到img.shape[0]-1和0到img.shape[1]-1之间的随机整数作为坐标值。如果random.randint(0, 1)的结果为0,则将对应位置的像素值设置为0,否则设置为255。最后,通过cv2.imshow函数显示处理后的图像,并通过cv2.waitKey和cv2.destroyAllWindows函数等待并关闭窗口。
请注意确保图像路径正确,并且已经安装了cv2和numpy库。如果有任何问题,请及时提出。
相关问题
使用chinese-mnist数据集对中文手写数字进行图像识别。其中chinese-mnist数据集包括data文件夹以及chinese-mnist.csv,在文件data中有15000张图片,在图片预处理中,将图片大小改为150*150 并转换为三通道图片,再划分测试集和训练集,其比例为2:8 。并创建CNN神经网络模型,再模型编译包括优化器,loss函数,模型性能,再进行模型训练包含训练集,展示过程 跑多少轮,精度。最后进行图像识别
好的,让我来逐步回答你的问题:
1. 图片预处理
首先,你需要导入必要的库,如下所示:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import cv2
import random
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
```
然后,你需要读取csv文件,并将图片路径和标签提取出来,如下所示:
```python
# 读取csv文件
data = pd.read_csv('chinese-mnist.csv')
# 提取图片路径和标签
img_paths = data['path'].values
labels = data['label'].values
```
接下来,你需要将图片尺寸调整为150*150,并转换为三通道图片,如下所示:
```python
# 将图片尺寸调整为150*150,并转换为三通道图片
def preprocess_img(img_path):
img = cv2.imread(img_path)
img = cv2.resize(img, (150, 150))
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
return img
# 处理所有图片
X = []
for img_path in img_paths:
img = preprocess_img('data/' + img_path)
X.append(img)
X = np.array(X)
```
最后,你需要将数据集划分为测试集和训练集,其比例为2:8,如下所示:
```python
# 将数据集划分为测试集和训练集
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)
```
2. 创建CNN神经网络模型
接下来,你需要创建一个CNN神经网络模型。这里我们采用了4层卷积层和3层全连接层,如下所示:
```python
# 创建CNN神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(15, activation='softmax'))
```
3. 模型编译
接下来,你需要编译模型,包括优化器、loss函数和模型性能。这里我们采用了Adam优化器和交叉熵损失函数,如下所示:
```python
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```
4. 模型训练
接下来,你需要训练模型,包括训练集、展示过程、跑多少轮和精度。这里我们采用了50个epochs,如下所示:
```python
# 将标签转换为one-hot编码
y_train = to_categorical(y_train, num_classes=15)
y_test = to_categorical(y_test, num_classes=15)
# 训练模型
history = model.fit(X_train, y_train, batch_size=32, epochs=50, validation_data=(X_test, y_test))
# 绘制训练过程中的loss和accuracy曲线
plt.plot(history.history['loss'], label='train_loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.plot(history.history['accuracy'], label='train_acc')
plt.plot(history.history['val_accuracy'], label='val_acc')
plt.legend()
plt.show()
# 在测试集上评估模型精度
test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test Accuracy: {:.2f}%'.format(test_acc * 100))
```
5. 图像识别
最后,你可以用训练好的模型进行图像识别。你需要将输入的图像预处理成与训练集相同的格式,然后用训练好的模型进行预测,如下所示:
```python
# 定义标签
label_dict = {
0: '零', 1: '一', 2: '二', 3: '三', 4: '四',
5: '五', 6: '六', 7: '七', 8: '八', 9: '九',
10: '十', 11: '百', 12: '千', 13: '万', 14: '亿'
}
# 预处理输入的图像
def preprocess_input(img_path):
img = cv2.imread(img_path)
img = cv2.resize(img, (150, 150))
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
img = np.expand_dims(img, axis=0)
return img
# 加载训练好的模型
model = load_model('model.h5')
# 进行图像识别
img = preprocess_input('test.png')
pred = model.predict(img)
pred_label = label_dict[np.argmax(pred)]
print('Predicted Label: {}'.format(pred_label))
```
这样,你就可以对中文手写数字进行图像识别了。
用python实现编码:结果: 实现老鼠和鸭的分类 过程: 1. 自己上网寻找老鼠和鸭的图像 2. 自己完成图像的预处理(形成64x64 的3通道图像) 3. 自己对数据集进行分类 4. 自己依据分类后的数据集进行训练 5. 根据自己的训练结果随意找一张图像预测输出对应的标签
好的,下面是用 Python 实现老鼠和鸭的分类的代码:
1. 导入必要的库
```python
import os
import numpy as np
import cv2
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
```
2. 定义数据集路径和图像大小
```python
DATASET_PATH = 'dataset'
IMG_SIZE = 64
```
3. 加载数据集并进行预处理
```python
def load_dataset():
X, y = [], []
for label, name in enumerate(['duck', 'mouse']):
folder_path = os.path.join(DATASET_PATH, name)
for filename in os.listdir(folder_path):
img_path = os.path.join(folder_path, filename)
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
X.append(img)
y.append(label)
X = np.array(X)
y = to_categorical(y, num_classes=2)
return X, y
X, y = load_dataset()
```
4. 划分训练集和测试集
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. 定义模型
```python
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
```
6. 编译模型
```python
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```
7. 训练模型
```python
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test))
```
8. 预测新图像
```python
def predict_image(filename):
img_path = os.path.join(DATASET_PATH, filename)
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
img = np.array(img).reshape(-1, IMG_SIZE, IMG_SIZE, 3)
pred = model.predict(img)
return np.argmax(pred)
print(predict_image('duck.jpg')) # 输出 0
print(predict_image('mouse.jpg')) # 输出 1
```
这样就完成了老鼠和鸭的分类任务。
阅读全文