完全集合经验模态分解的matlab代码
时间: 2023-09-10 22:14:43 浏览: 139
完全集合经验模态分解(EEMD)的Matlab代码如下:
```matlab
function allmode = eemd(Y, Nstd, NE)
xsize = length(Y);
dd = 1:1:xsize;
Ystd = std(Y);
Y = Y / Ystd;
TNM = fix(log2(xsize)) - 1;
TNM2 = TNM * 2;
for kk = 1:1:TNM2
for ii = 1:1:xsize
allmode(ii, kk) = 0.0;
end
end
for iii = 1:1:NE
for i = 1:xsize
temp = randn(1, 1) * Nstd;
X1(i) = Y(i) + temp;
end
for jj = 1:1:xsize
mode(jj, 1) = Y(jj);
end
xorigin = X1;
xend = xorigin;
nmode = 1;
while nmode <= TNM
xstart = xend;
iter = 1;
while iter <= 10
[spmax, spmin, flag = extrema(xstart);
upper = spline(spmax(:, 1), spmax(:, 2), dd);
lower = spline(spmin(:, 1), spmin(:, 2), dd);
mean_ul = (upper + lower) / 2;
xstart = xstart - mean_ul;
iter = iter + 1;
end
xend = xend - xstart;
nmode = nmode + 1;
for jj = 1:1:xsize
mode(jj, nmode) = xstart(jj);
end
end
for jj = 1:1:xsize
mode(jj, nmode + 1) = xend(jj);
end
allmode = allmode + mode;
end
allmode = allmode / NE;
allmode = allmode * Ystd;
end
```
这段代码实现了完全集合经验模态分解(EEMD),其中`Y`是输入信号,`Nstd`是附加的白噪声的标准差,`NE`是进行EEMD的次数。代码首先对输入信号进行标准化处理,然后根据指定的噪声标准差和EEMD次数进行循环操作。在每次循环中,会生成一个包含附加噪声的新信号,并使用改进的EMD方法进行模态分解。最后,将所有的模态分量累加得到最终的结果。请注意,为了运行这段代码,你需要在Matlab环境中安装相关的工具包和函数(如`spline`和`extrema`)。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [EEMD集合经验模态分解matlab程序代码](https://download.csdn.net/download/weixin_42956898/11062087)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [EMD/EEMD 经验模态分解/集合经验模态分解](https://blog.csdn.net/weixin_46062179/article/details/120077165)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文