python多岛遗传算法python多岛遗传算法多目标寻优
时间: 2023-11-03 19:03:16 浏览: 257
python版遗传算法实现(可运行)_python_多目标优化算法_遗传算法
5星 · 资源好评率100%
多岛遗传算法是一种多目标优化算法,它模拟了自然界的多个“岛屿”,每个岛屿代表一个优化问题的解空间。在多岛遗传算法中,每个岛屿都有自己的种群,并通过遗传算子(如选择、交叉和变异)进行进化。
在Python中,可以使用开源库DEAP(Distributed Evolutionary Algorithms in Python)来实现多岛遗传算法。DEAP提供了丰富的遗传算法工具,包括选择算子、交叉算子和变异算子等。使用DEAP,你可以定义适应度函数和问题约束,并进行多目标优化。
下面是一个使用DEAP实现多岛遗传算法的简单示例代码:
```python
import random
from deap import base, creator, tools
# 定义问题的优化目标
creator.create("FitnessMax", base.Fitness, weights=(1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMax)
# 初始化算法参数
toolbox = base.Toolbox()
toolbox.register("attribute", random.uniform, -10, 10)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attribute, n=5)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# 定义适应度评估函数
def evaluate(individual):
# 评估目标1:最小化
fitness1 = sum(individual)
# 评估目标2:最大化
fitness2 = len(individual) - sum(individual)
return fitness1, fitness2
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
toolbox.register("select", tools.selNSGA2)
# 创建多个岛屿
islands = [toolbox.population(n=50) for _ in range(5)]
# 多岛遗传算法主循环
for island in islands:
for _ in range(100):
offspring = algorithms.varAnd(island, toolbox, cxpb=0.5, mutpb=0.1)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
island = toolbox.select(offspring, k=len(island))
# 输出多岛遗传算法得到的最优解
best_individuals = [tools.selBest(island, k=1)[0] for island in islands]
best_objectives = [toolbox.evaluate(ind) for ind in best_individuals]
print(best_individuals)
print(best_objectives)
```
阅读全文