设计一个21点游戏,所有数字牌按牌面计算点数,每个点数有4张牌(花牌]、q、k及

时间: 2023-12-22 15:01:34 浏览: 42
21点游戏是一种非常流行的扑克游戏,玩家需要在发牌过程中努力凑成21点,但是不能超过。为了设计这个游戏,我们可以按照以下规则来进行: 首先,我们需要一副52张的标准扑克牌,而且牌都是按照其牌面点数来计算分数。比如A为1点,2-10为相应的点数,J、Q、K都是10点。 每个点数的牌数为4张,包括A、2、3、4、5、6、7、8、9、10、J、Q、K。 游戏开始时,玩家先下注一定数量的筹码,然后每个玩家会收到两张牌,然后轮流决定是否要再要一张牌来接近21点,如果超过21点则爆破,输掉游戏。 玩家可以通过要牌或者停牌的方式来达到尽可能接近21点的目标,而且还可以选择要加倍或者分牌等策略来增加赢得游戏的几率。 最后,当所有玩家都停牌或者爆牌之后,庄家会依次亮出牌来和玩家比较,最后根据点数大小来确定输赢。 这样设计的21点游戏可以增加策略性和趣味性,并且充满了挑战性,适合多个玩家一起参与。
相关问题

c语言21点游戏花牌a

21点游戏中的花牌A在C语言中应该如何表示? 在21点游戏中,花牌A可以被视为1或11,因此在C语言中,可以使用一个整型变量来表示花牌A的点数。当花牌A作为11时,该变量的值为11,当花牌A作为1时,该变量的值为1。 例如,可以声明一个名为"card_A"的整型变量来表示花牌A的点数,如下所示: ```c int card_A = 11; // 花牌A作为11时的点数 ``` 当花牌A作为1时,可以将该变量的值修改为1,如下所示: ```c card_A = 1; // 花牌A作为1时的点数 ``` 这样,在编写21点游戏的C语言程序时,就可以使用该变量来表示花牌A的点数,并根据需要进行相应的修改。

import random random.seed(10) class Deck: def init(self): ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'] suits = ['C', 'D', 'H', 'S'] self.deck = [s + r for s in suits for r in ranks] random.shuffle(self.deck) def hand(self, n=1): #拿一手牌,n张 hand = [self.deck[i] for i in range(n)] del self.deck[:n] return hand def deal(self, cards_per_hand, no_of_players): #发牌,cards_per_hand:每个人发牌数, no_of_players:人数 return [self.hand(cards_per_hand) for i in range(no_of_players)] def str(self): return str(self.deck) def same_rank(hand, n_of_a_kind): #分析牌有对或者3-4个 #hand:一手牌,n_of_a_kind:2~4 寻找相同牌面有这么多的牌 ranks = [card[1:] for card in hand] counter = 0 already_counted = [] for rank in ranks: if rank not in already_counted and \ ranks.count(rank) == n_of_a_kind: counter += 1 already_counted.append(rank) return counter def same_suit(hand): #统计同花牌数量 suits = [card[0] for card in hand] counter = {} # counter[suit]存放suit花色的数量 for suit in suits: count = suits.count(suit) if count > 1: #只记录花色数大于1的 counter[suit] = count return counter N=100000 #实验次数 #计算五张牌中正好两对的概率 def prob_two_pairs(): #----------begin----------- #----------end----------- #五张牌中有四张或五张同一花色的牌的概率 def prob_same_suit(): #----------begin----------- #----------end----------- #计算五张牌中有四张牌面数字相同的牌(四条)的概率 def prob_fourofakind(): #----------begin----------- #----------end----------- print('五张牌中正好两对的概率:%.5f' %prob_two_pairs()) print('五张牌中有四张或五张同一花色的牌的概率:%.5f' %prob_same_suit()) print('五张牌中有四张牌面数字相同的牌(四条)的概率:%.5f' %prob_fourofakind())请补全代码

import random random.seed(10) class Deck: def __init__(self): ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'] suits = ['C', 'D', 'H', 'S'] self.deck = [s + r for s in suits for r in ranks] random.shuffle(self.deck) def hand(self, n=1): #拿一手牌,n张 hand = [self.deck[i] for i in range(n)] del self.deck[:n] return hand def deal(self, cards_per_hand, no_of_players): #发牌,cards_per_hand:每个人发牌数, no_of_players:人数 return [self.hand(cards_per_hand) for i in range(no_of_players)] def __str__(self): return str(self.deck) def same_rank(hand, n_of_a_kind): #分析牌有对或者3-4个 #hand:一手牌,n_of_a_kind:2~4 寻找相同牌面有这么多的牌 ranks = [card[1:] for card in hand] counter = 0 already_counted = [] for rank in ranks: if rank not in already_counted and \ ranks.count(rank) == n_of_a_kind: counter += 1 already_counted.append(rank) return counter def same_suit(hand): #统计同花牌数量 suits = [card[0] for card in hand] counter = {} # counter[suit]存放suit花色的数量 for suit in suits: count = suits.count(suit) if count > 1: #只记录花色数大于1的 counter[suit] = count return counter N=100000 #实验次数 #计算五张牌中正好两对的概率 def prob_two_pairs(): count = 0 for i in range(N): d = Deck() hand = d.hand(5) if same_rank(hand, 2) == 2: count += 1 return count / N #五张牌中有四张或五张同一花色的牌的概率 def prob_same_suit(): count = 0 for i in range(N): d = Deck() hand = d.hand(5) suits = same_suit(hand) if 4 in suits.values() or 5 in suits.values(): count += 1 return count / N #计算五张牌中有四张牌面数字相同的牌(四条)的概率 def prob_fourofakind(): count = 0 for i in range(N): d = Deck() hand = d.hand(5) if same_rank(hand, 4) == 1: count += 1 return count / N print('五张牌中正好两对的概率:%.5f' %prob_two_pairs()) print('五张牌中有四张或五张同一花色的牌的概率:%.5f' %prob_same_suit()) print('五张牌中有四张牌面数字相同的牌(四条)的概率:%.5f' %prob_fourofakind())

相关推荐

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

软件设计师讲义.md

软件设计师讲义.md
recommend-type

时间序列预测,股票方向应用,使用transformer-lstm融合的模型算法

适用人群 针对有一定机器学习和深度学习背景的专业人士,特别是那些对时间序列预测和Transformer以及LSTM模型有兴趣的人。需要一定的Python知识基础 适用场景 用于处理时间序列数据,尤其是在金融领域,示例是股票价格预测。Transformer模型和LSTM的混合使用表明,代码的目的是利用这两种模型的优势来提高预测准确性。 目标 代码的主要目标是利用Transformer模型和LSTM模型来预测时间序列数据,如股票价格。通过实现这两种模型,代码旨在提供一个强大的工具来进行更准确的时间序列分析和预测。
recommend-type

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。