distant supervision的关系抽取代码,带注释
时间: 2023-03-19 15:25:15 浏览: 142
以下是一个简单的关系抽取代码,使用的是distant supervision方法。这个方法是使用预先定义的知识库中的实体和关系标签,将它们对应到包含这些实体的句子中,然后从中提取特征并训练模型进行关系抽取。这种方法可以利用大规模的知识库和文本语料库,但也存在标注错误和知识库不完备等问题。
```python
import os
import re
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
# 设置随机种子,以便复现结果
seed = 1234
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# 加载预训练的tokenizer和model
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
model = AutoModel.from_pretrained('bert-base-uncased')
# 加载数据
data_dir = 'data'
train_df = pd.read_csv(os.path.join(data_dir, 'train.csv'))
test_df = pd.read_csv(os.path.join(data_dir, 'test.csv'))
# 定义正则表达式,以从句子中提取实体和关系标签
entity_regex = re.compile(r'<e>(.*?)<\/e>')
relation_regex = re.compile(r'<r>(.*?)<\/r>')
# 将句子中的实体替换为特殊标记
def replace_entities(sentence, entities):
for entity in entities:
sentence = sentence.replace(entity, '<e>' + entity + '</e>')
return sentence
# 将句子中的关系替换为特殊标记
def replace_relation(sentence, relation):
return sentence.replace(relation, '<r>' + relation + '</r>')
# 将句子转换为tokens,并使用特殊的CLS和SEP token
def tokenize(sentence):
tokens = tokenizer.tokenize(sentence)
tokens = ['[CLS]'] + tokens + ['[SEP]']
return tokens
# 将tokens转换为IDs
def convert_to_ids(tokens):
input_ids = tokenizer.convert_tokens_to_ids(tokens)
return input_ids
# 将tokens对齐到指定长度,并在不足长度时用0填充
def pad_sequence(sequence, max_len):
if len(sequence) < max_len:
sequence += [0] * (max_len - len(sequence))
else:
sequence = sequence[:max_len]
return sequence
# 为数据集创建一个Dataset类,用于在训练时读取数据
class RelationExtractionDataset(torch.utils.data.Dataset):
def __init__(self, df):
self.df = df
def __len__(self):
return len(self.df)
def __getitem__(self, index):
row = self.df.iloc[index]
sentence = row['sentence']
entities = row['entities'].split(',')
relation = row['relation']
# 将实体替换为特殊标记
sentence = replace_entities(sentence, entities)
# 将关系替换为特殊标记
sentence = replace_relation(sentence, relation)
# 将句子转换为tokens
tokens = tokenize(sentence)
# 将tokens转换
阅读全文