请用TensorFlow2构建一个DCGAN模型生成数字图片,包括模型的搭建,编译及训练
时间: 2024-03-16 07:41:28 浏览: 135
好的,我可以帮你构建一个DCGAN模型生成数字图片。首先,我们需要导入相关的库和数据集:
```python
import tensorflow as tf
from tensorflow.keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
# 加载mnist数据集
(train_images, _), (_, _) = mnist.load_data()
# 将像素值缩放到[-1, 1]之间
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5
```
接下来,我们定义生成器和判别器模型。生成器使用反卷积层(transpose convolutional layers)将随机噪声(latent space)转换为图像,判别器则是一个二分类器,用于区分真实图片和生成器生成的假图片。
```python
def make_generator_model():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256)
model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(1))
return model
```
接下来,我们实例化生成器和判别器模型,并定义损失函数和优化器。
```python
generator = make_generator_model()
discriminator = make_discriminator_model()
# 定义损失函数和优化器
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
```
接下来,我们定义训练函数,并在每个epoch结束后生成一些样本图片以观察生成器的输出。
```python
# 定义训练函数
@tf.function
def train_step(images):
noise = tf.random.normal([batch_size, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 定义生成图片函数
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i + 1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
```
最后,我们进行模型的训练:
```python
# 定义训练参数
EPOCHS = 100
batch_size = 256
noise_dim = 100
num_examples_to_generate = 16
# 生成固定的噪声,用于每个epoch结束后生成样本图片
seed = tf.random.normal([num_examples_to_generate, noise_dim])
# 训练模型
for epoch in range(EPOCHS):
for i in range(train_images.shape[0] // batch_size):
batch = train_images[i * batch_size:(i + 1) * batch_size]
train_step(batch)
if epoch % 10 == 0:
generate_and_save_images(generator, epoch + 1, seed)
```
这样,我们就完成了DCGAN模型的搭建、编译和训练,可以通过生成的样本图片来验证生成器的输出效果。
阅读全文