多智能体编队actor-critic pytorch代码
时间: 2024-01-11 13:03:11 浏览: 126
以下是一个简单的多智能体编队actor-critic PyTorch代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义Actor神经网络
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, action_size)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=-1)
def forward(self, state):
x = self.relu(self.fc1(state))
x = self.relu(self.fc2(x))
x = self.softmax(self.fc3(x))
return x
# 定义Critic神经网络
class Critic(nn.Module):
def __init__(self, state_size):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 1)
self.relu = nn.ReLU()
def forward(self, state):
x = self.relu(self.fc1(state))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义Actor-Critic算法
class ActorCritic:
def __init__(self, state_size, action_size, lr_actor=1e-4, lr_critic=1e-3, gamma=0.99):
self.actor = Actor(state_size, action_size)
self.critic = Critic(state_size)
self.optimizer_actor = optim.Adam(self.actor.parameters(), lr=lr_actor)
self.optimizer_critic = optim.Adam(self.critic.parameters(), lr=lr_critic)
self.gamma = gamma
def select_action(self, state):
state = torch.FloatTensor(state)
action_probs = self.actor.forward(state)
action = torch.multinomial(action_probs, 1)
return action.item()
def update(self, rewards, states, next_states, actions, done):
# 计算critic的loss
rewards = torch.FloatTensor(rewards)
states = torch.FloatTensor(states)
next_states = torch.FloatTensor(next_states)
actions = torch.LongTensor(actions)
td_target = rewards + (1 - done) * self.gamma * self.critic(next_states).squeeze()
td_error = td_target - self.critic(states).squeeze()
critic_loss = td_error.pow(2).mean()
# 更新critic网络
self.optimizer_critic.zero_grad()
critic_loss.backward()
self.optimizer_critic.step()
# 计算actor的loss
action_probs = self.actor(states)
log_probs = torch.log(torch.gather(action_probs, 1, actions.view(-1, 1)))
actor_loss = -(log_probs * td_error.detach()).mean()
# 更新actor网络
self.optimizer_actor.zero_grad()
actor_loss.backward()
self.optimizer_actor.step()
# 定义环境
class Environment:
def __init__(self, num_agents, state_size, action_size):
self.num_agents = num_agents
self.state_size = state_size
self.action_size = action_size
def reset(self):
self.states = np.zeros((self.num_agents, self.state_size))
self.rewards = np.zeros(self.num_agents)
self.done = np.zeros(self.num_agents, dtype=bool)
self.total_reward = np.zeros(self.num_agents)
return self.states
def step(self, actions):
for i in range(self.num_agents):
if not self.done[i]:
self.states[i] += np.random.rand(self.state_size) # 模拟环境
self.rewards[i] = np.random.rand() # 模拟奖励
self.total_reward[i] += self.rewards[i]
if np.random.rand() < 0.1: # 模拟终止
self.done[i] = True
next_states = self.states
return next_states, self.rewards, self.done
# 训练
env = Environment(num_agents=2, state_size=4, action_size=2)
ac = ActorCritic(state_size=4, action_size=2)
num_episodes = 1000
for i in range(num_episodes):
states = env.reset()
done = False
while not done.all():
actions = [ac.select_action(state) for state in states]
next_states, rewards, done = env.step(actions)
ac.update(rewards, states, next_states, actions, done)
states = next_states
print("Episode {}, Total reward: {}".format(i, env.total_reward))
```
请注意,此代码示例仅用于说明多智能体编队actor-critic算法的实现方式,并不是一个完整、可用的算法。实际应用中,需要根据具体问题进行修改和优化。
阅读全文