--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-38-73c498ba6fc2> in <cell line: 2>() 3 input_tensor = graph.get_tensor_by_name('ImageTensor:0') 4 output_tensor = graph.get_tensor_by_name('SemanticPredictions:0') ----> 5 output = sess.run(output_tensor, feed_dict={input_tensor: img_a}) 1 frames /usr/local/lib/python3.10/dist-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata) 1163 if (not is_tensor_handle_feed and 1164 not subfeed_t.get_shape().is_compatible_with(np_val.shape)): -> 1165 raise ValueError( 1166 f'Cannot feed value of shape {str(np_val.shape)} for Tensor ' 1167 f'{subfeed_t.name}, which has shape ' ValueError: Cannot feed value of shape (1608, 1608) for Tensor ImageTensor:0, which has shape (1, None, None, 3)
时间: 2023-08-25 11:58:22 浏览: 114
这个错误是因为你尝试将维度为`(1608, 1608)`的图像`img_a`作为输入传递给了`ImageTensor:0`,但是`ImageTensor:0`的形状应为`(1, None, None, 3)`。
为了解决这个问题,你可以尝试调整图像的形状,使其与模型期望的形状匹配。下面是一种可能的解决方案:
```python
import cv2
import numpy as np
import urllib.request
import tensorflow as tf
from cellpose import models
# 下载DeepLabv3+模型权重文件
model_url = "http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz"
tar_filename = "deeplabv3_mnv2_pascal_train_aug.tar.gz"
urllib.request.urlretrieve(model_url, tar_filename)
# 解压缩
with tarfile.open(tar_filename, "r:gz") as tar:
tar.extractall()
model_filename = "deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb"
# 加载DeepLabv3+模型
graph = tf.Graph()
with graph.as_default():
od_graph_def = tf.GraphDef()
with tf.io.gfile.GFile(model_filename, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 加载Cellpose模型
model1 = models.CellposeModel(gpu=True, model_type='livecell')
model2 = models.CellposeModel(gpu=True, model_type='nuclei')
model3 = models.CellposeModel(gpu=True, model_type='cyto2')
# 读取图像
image_path = "your_image.jpg"
image = cv2.imread(image_path)
# 调整图像形状
image_resized = cv2.resize(image, (None, None), fx=0.5, fy=0.5) # 调整图像的大小,可以根据需要修改缩放因子
# 使用DeepLabv3+模型进行图像分割
with tf.compat.v1.Session(graph=graph) as sess:
input_tensor = graph.get_tensor_by_name('ImageTensor:0')
output_tensor = graph.get_tensor_by_name('SemanticPredictions:0')
output = sess.run(output_tensor, feed_dict={input_tensor: np.expand_dims(image_resized, axis=0)})
# 解码并可视化分割结果
segmentation_mask = np.squeeze(output)
segmentation_mask = np.uint8(segmentation_mask)
segmentation_mask = cv2.resize(segmentation_mask, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
# 使用Cellpose模型进行细胞分割
masks1, _, _, _ = model1.eval(image_resized)
masks2, _, _, _ = model2.eval(image_resized)
masks3, _, _, _ = model3.eval(image_resized)
# 可视化结果
cv2.imshow("Original Image", image)
cv2.imshow("Segmentation Mask (DeepLabv3+)", segmentation_mask)
cv2.imshow("Cell Masks (Model 1)", masks1)
cv2.imshow("Cell Masks (Model 2)", masks2)
cv2.imshow("Cell Masks (Model 3)", masks3)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在上述代码中,我使用`cv2.resize`函数对图像进行了缩放,你可以根据需要调整缩放因子。这样,图像的形状与模型期望的形状匹配。
希望这可以解决你的问题!如果还有其他疑问,请随时告诉我。
阅读全文