File "/media/linux/643A-4CF3/code/SelfDeblur-master/CLAHE.py", line 53, in abmhe block_pixels[i, j] = img[i * block_size:(i + 1) * block_size, j * block_size:(j + 1) * block_size] ValueError: could not broadcast input array from shape (16,16,3) into shape (16,16)
时间: 2024-02-03 10:03:59 浏览: 145
这个错误是因为你正在尝试将一个形状为 (16, 16, 3) 的数组广播成一个形状为 (16, 16) 的数组。这意味着你的代码期望使用的是灰度图像而不是 RGB 图像。你需要将 RGB 图像转换为灰度图像,然后再执行块操作。你可以使用 OpenCV 库中的 `cv2.cvtColor()` 函数将 RGB 图像转换为灰度图像。例如:
```
import cv2
# 读取 RGB 图像
img = cv2.imread('path/to/rgb_image.jpg')
# 将 RGB 图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 执行块操作
block_size = 16
for i in range(img.shape[0] // block_size):
for j in range(img.shape[1] // block_size):
block = gray[i * block_size:(i + 1) * block_size, j * block_size:(j + 1) * block_size]
# 对块进行操作
```
注意,`cv2.cvtColor()` 函数的第二个参数指定了颜色转换的类型。在这个例子中,我们将 RGB 图像转换为灰度图像,因此我们使用了 `cv2.COLOR_BGR2GRAY` 参数。
相关问题
Traceback (most recent call last): File "/media/linux/643A-4CF3/code/SelfDeblur-master/KMeansClaheMAD.py", line 49, in <module> contrast = mad_clahe(image) File "/media/linux/643A-4CF3/code/SelfDeblur-master/KMeansClaheMAD.py", line 14, in mad_clahe blocks = skimage.util.view_as_blocks(image, block_shape) File "/home/linux/.conda/envs/opencv/lib/python3.8/site-packages/skimage/util/shape.py", line 81, in view_as_blocks raise ValueError("'block_shape' must have the same length " ValueError: 'block_shape' must have the same length as 'arr_in.shape'
这个错误的意思是 "block_shape" 的长度必须与 "arr_in.shape" 相同。这个错误通常出现在使用 skimage.util.view_as_blocks() 函数时,因为该函数需要指定块的形状。
你需要检查你传递给 view_as_blocks() 函数的参数是否正确。确保 "block_shape" 和 "image" 的形状相同。你可以使用 image.shape 属性来获取图像的形状,并将其用于 block_shape 参数。
例如,如果 image 是一个 (512, 512) 的图像,你可以使用以下代码来创建 8x8 块:
```
import skimage.util
import numpy as np
image = np.zeros((512, 512))
block_shape = (8, 8)
blocks = skimage.util.view_as_blocks(image, block_shape)
```
请注意,在某些情况下,你可能需要调整块的形状来适应图像的形状。如果你仍然遇到问题,请提供更多的上下文和代码,以便更好地理解你的问题。
""" Contrast Limited Adaptive Histogram Equalization,CLAHE 对比度受限自适应直方图均衡 """ import cv2 # import numpy as np import matplotlib.pyplot as plt def show_img_with_matplotlib(color_img, title, pos): img_rgb = color_img[:, :, ::-1] plt.subplot(2, 5, pos) plt.imshow(img_rgb) plt.title(title, fontsize=8) plt.axis('off') def equalize_clahe_color_hsv(img): cla = cv2.createCLAHE(clipLimit=4.0) H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) eq_V = cla.apply(V) eq_image = cv2.cvtColor(cv2.merge([H, S, eq_V]), cv2.COLOR_HSV2BGR) return eq_image def equalize_clahe_color_lab(img): cla = cv2.createCLAHE(clipLimit=4.0) L, a, b = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2Lab)) eq_L = cla.apply(L) eq_image = cv2.cvtColor(cv2.merge([eq_L, a, b]), cv2.COLOR_Lab2BGR) return eq_image def equalize_clahe_color_yuv(img): cla = cv2.createCLAHE(clipLimit=4.0) Y, U, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2YUV)) eq_Y = cla.apply(Y) eq_image = cv2.cvtColor(cv2.merge([eq_Y, U, V]), cv2.COLOR_YUV2BGR) return eq_image def equalize_clahe_color(img): cla = cv2.createCLAHE(clipLimit=4.0) channels = cv2.split(img) eq_channels = [] for ch in channels: eq_channels.append(cla.apply(ch)) eq_image = cv2.merge(eq_channels) return eq_image # 加载图像 image = cv2.imread('D:/Documents/python/OpenCV/image/008.jpg') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 灰度图像应用 CLAHE clahe = cv2.createCLAHE(clipLimit=2.0) gray_image_clahe = clahe.apply(gray_image) # 使用不同 clipLimit 值 clahe.setClipLimit(5.0) gray_image_clahe_2 = clahe.apply(gray_image) clahe.setClipLimit(10.0) gray_image_clahe_3 = clahe.apply(gray_image) clahe.setClipLimit(20.0) gray_image_clahe_4 = clahe.apply(gray_image) # 彩色图像应用 CLAHE image_clahe_color = equalize_clahe_color(image) image_clahe_color_lab = equalize_clahe_color_lab(image) image_clahe_color_hsv = equalize_clahe_color_hsv(image) image_clahe_color_yuv = equalize_clahe_color_yuv(image) # 标题 plt.figure(figsize=(10, 4)) plt.suptitle("Color histogram equalization with cv2.equalizedHist() - not a good approach", fontsize=9, fontweight='bold') # 可视化 show_img_with_matplotlib(cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR), "gray", 1) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=2.0", 2) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_2, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=5.0", 3) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_3, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=10.0", 4) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_4, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=20.0", 5) show_img_with_matplotlib(image, "color", 6) show_img_with_matplotlib(image_clahe_color, "clahe on each channel(BGR)", 7) show_img_with_matplotlib(image_clahe_color_lab, "clahe on each channel(LAB)", 8) show_img_with_matplotlib(image_clahe_color_hsv, "clahe on each channel(HSV)", 9) show_img_with_matplotlib(image_clahe_color_yuv, "clahe on each channel(YUV)", 10) plt.show()
CLAHE,即对比度受限自适应直方图均衡化,是一种用于增强图像对比度的方法。在计算图像直方图均衡化的过程中,CLAHE会先将图像分成许多小块,并对每个小块进行直方图均衡化。由于小块内的像素值范围较小,采取均衡化的结果会使得低对比度的区域增强,同时避免出现像素值过饱和的情况。CLAHE能够在保持图像整体视觉质量的同时,突出图像细节。在OpenCV库中,可以通过cv2.createCLAHE()函数来调用CLAHE算法。
阅读全文
相关推荐













