python GHM loss代码
时间: 2023-10-13 19:25:40 浏览: 103
以下是一个简单的 PyTorch GHM Loss 的实现代码:
```python
import torch
class GHM_Loss(torch.nn.Module):
def __init__(self, bins=10, alpha=0.75, momentum=0):
super(GHM_Loss, self).__init__()
self.bins = bins
self.alpha = alpha
self.momentum = momentum
self.edges = [float(x) / bins for x in range(bins+1)]
self.edges[-1] += 1e-6
if momentum > 0:
self.acc_sum = [0.0] * bins
def forward(self, pred, target):
edges = self.edges
mmt = self.momentum
weights = torch.zeros_like(pred)
g = torch.abs(pred - target)
tot = target.size(0) * target.size(1) * target.size(2) * target.size(3)
n = 0 # n valid bins
for i in range(self.bins):
inds = (g >= edges[i]) & (g < edges[i+1])
num_in_bin = inds.sum().item()
if num_in_bin > 0:
if mmt > 0:
self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt) * num_in_bin
weights[inds] = tot / self.acc_sum[i]
else:
weights[inds] = tot / num_in_bin
n += 1
if n > 0:
weights = weights / n
loss = torch.nn.functional.binary_cross_entropy_with_logits(pred, target, weights, reduction='sum') / tot
return loss
```
其中,`bins` 表示 GHM Loss 中的 bin 数量,`alpha` 表示 GHM Loss 中的 $\alpha$ 参数,`momentum` 表示动量参数。在 `forward` 函数中,首先根据预测值和真实值计算出 $g=|pred-target|$,然后根据 $g$ 的分布情况计算出权重 `weights`。最后,使用 `binary_cross_entropy_with_logits` 函数计算 GHM Loss。
阅读全文