用TensorFlow2搭建DQN模型
时间: 2023-12-19 19:07:24 浏览: 170
快速入门 TensorFlow2 模型部署
DQN是一种深度强化学习算法,可以用于解决强化学习问题。在TensorFlow2中搭建DQN模型需要进行以下步骤:
1.导入相关的库
```
import tensorflow as tf
from tensorflow.keras import layers
```
2.构建模型
DQN模型由两个部分组成,分别是网络和损失函数。
网络部分:
```
class DQN(tf.keras.Model):
def __init__(self, num_actions):
super(DQN, self).__init__()
self.conv1 = layers.Conv2D(32, 8, strides=4, activation='relu')
self.conv2 = layers.Conv2D(64, 4, strides=2, activation='relu')
self.conv3 = layers.Conv2D(64, 3, strides=1, activation='relu')
self.flatten = layers.Flatten()
self.dense1 = layers.Dense(512, activation='relu')
self.dense2 = layers.Dense(num_actions)
def call(self, inputs):
x = self.conv1(inputs)
x = self.conv2(x)
x = self.conv3(x)
x = self.flatten(x)
x = self.dense1(x)
x = self.dense2(x)
return x
```
损失函数部分:
```
@tf.function
def compute_loss(model, target_model, states, actions, rewards, next_states, is_terminal, gamma):
Q = model(states)
Q_target = target_model(next_states)
Q_target = tf.stop_gradient(Q_target)
max_Q = tf.reduce_max(Q_target, axis=1)
target_Q = rewards + (1 - is_terminal) * gamma * max_Q
action_masks = tf.one_hot(actions, num_actions)
Q_action = tf.reduce_sum(tf.multiply(Q, action_masks), axis=1)
loss = tf.reduce_mean(tf.square(target_Q - Q_action))
return loss
```
3.定义优化器
```
optimizer = tf.optimizers.Adam(learning_rate=learning_rate)
```
4.定义重放缓冲区
```
class ReplayBuffer(object):
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.num_experiences = 0
self.buffer = []
def get_batch(self, batch_size):
if self.num_experiences < batch_size:
return None
else:
indices = np.random.choice(self.num_experiences, size=batch_size, replace=False)
states_batch = np.array([self.buffer[i][0] for i in indices])
actions_batch = np.array([self.buffer[i][1] for i in indices])
rewards_batch = np.array([self.buffer[i][2] for i in indices])
next_states_batch = np.array([self.buffer[i][3] for i in indices])
is_terminal_batch = np.array([self.buffer[i][4] for i in indices])
return states_batch, actions_batch, rewards_batch, next_states_batch, is_terminal_batch
def size(self):
return self.buffer_size
def add(self, state, action, reward, next_state, is_terminal):
experience = (state, action, reward, next_state, is_terminal)
if self.num_experiences < self.buffer_size:
self.buffer.append(experience)
self.num_experiences += 1
else:
self.buffer.pop(0)
self.buffer.append(experience)
```
5.训练模型
```
def train(model, target_model, optimizer, replay_buffer, gamma, batch_size):
states_batch, action_batch, reward_batch, next_states_batch, is_terminal_batch = replay_buffer.get_batch(batch_size)
loss = compute_loss(model, target_model, states_batch, action_batch, reward_batch, next_states_batch, is_terminal_batch, gamma)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
```
6.训练过程
```
for episode in range(max_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action = choose_action(model, state, num_actions, epsilon)
next_state, reward, done, info = env.step(action)
total_reward += reward
replay_buffer.add(state, action, reward, next_state, done)
state = next_state
if replay_buffer.size() > batch_size:
loss = train(model, target_model, optimizer, replay_buffer, gamma, batch_size)
if num_steps % update_target_model_freq == 0:
update_target_model(model, target_model)
if num_steps % epsilon_decay_steps == 0:
epsilon = max(epsilon * epsilon_decay, epsilon_min)
num_steps += 1
print("Episode:", episode, "Total Reward:", total_reward)
```
以上就是用TensorFlow2搭建DQN模型的完整流程,其中需要注意的是,我们在实现时还需实现epsilon-greedy策略和目标网络更新等操作。
阅读全文