UNET项目代码的定义定义unet模型部分代码示例与解释
时间: 2023-03-21 14:00:50 浏览: 159
以下是一个基本的UNet模型定义的代码示例和解释:
```python
import torch
import torch.nn as nn
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1, features=[64, 128, 256, 512]):
super(UNet, self).__init__()
self.downs = nn.ModuleList()
self.ups = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 定义下采样模块
for feature in features:
self.downs.append(nn.Sequential(
nn.Conv2d(in_channels, feature, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(feature, feature, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
))
in_channels = feature
# 定义上采样模块
for feature in reversed(features):
self.ups.append(nn.Sequential(
nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2),
nn.Conv2d(feature*2, feature, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(feature, feature, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
))
self.final = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.downs[-1](x)
for i, up in enumerate(self.ups):
x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
skip = skip_connections[-i - 1]
x = torch.cat([x, skip], axis=1)
x = up(x)
x = self.final(x)
return x
```
代码解释如下:
1. 首先,我们导入需要的 PyTorch 模块。
2. 然后,我们定义了一个名为 "UNet" 的类,继承自 nn.Module。
3. 类的构造函数中,我们定义了输入通道数、输出通道数和特征通道数列表。
4. 接下来,我们定义了 downsampling 和 upsampling 模块,分别用于下采样和上采样。
5. 对于 downsampling 模块,我们采用了连续的两个卷积层,每个卷积层后面跟一个 ReLU 激活函数。每个下采样模块的输出特征通道数是与上一个下采样模块的输入特征通道数相同,也就是 features 列表中定义的通道数。
6. 对于 upsampling 模块,我们使用转置卷积层(ConvTranspose2d)来进行上采样,然后再用卷积层进行卷积,并跟一个 ReLU 激活函数。每个上采样模块的输入特征通道数是当前特征通道数的两倍,输出特征通道数等于当前特
阅读全文