maskrcnn损失函数公式
时间: 2024-01-04 08:19:30 浏览: 160
49_Faster_R_CNN和Mask_R_CNN的损失函数详解1
Mask R-CNN的损失函数由三部分组成:分类误差、检测误差和分割误差。
分类误差和检测误差是Faster R-CNN中的,分割误差是Mask R-CNN中新增的。
对于每个MxM大小的ROI区域,mask分支有KxMxM维的输出(K是指类别数量)。
对于每一个像素,都使用sigmoid函数求二值交叉熵,即对每个像素进行逻辑回归,得到平均的二值交叉熵误差Lmask。
通过引入预测K个输出的机制,允许每个类都生成独立的mask,以避免类间竞争,这样就能解耦mask和种类预测。
对于每一个ROI区域,如果检测得到属于哪一个分类,就只使用该类的交叉熵误差进行计算,即对于一个ROI区域中KxMxM的输出,真正有用的只是某个类别的MxM的输出。
以下是Mask R-CNN损失函数的公式示意图:
![Mask R-CNN损失函数公式](image.png)
阅读全文