pytorch代码在VOC2012数据集上挖掘出某一类中具有频繁性和判别性的图片,挖掘网络使用LeNet,并将挖掘出的图片可视化

时间: 2023-12-03 07:45:48 浏览: 80
好的,这个任务可以分成以下几步来进行: 1. 加载VOC2012数据集并进行预处理 2. 定义LeNet网络结构 3. 对LeNet进行训练,挖掘出具有频繁性和判别性的图片 4. 可视化挖掘出的图片 下面我们逐步实现这些步骤。 首先需要安装必要的库,包括torch、torchvision、numpy、matplotlib等。可以使用以下命令进行安装: ```python !pip install torch torchvision numpy matplotlib ``` 接下来,我们开始实现第一步,加载VOC2012数据集并进行预处理。我们可以使用torchvision中的datasets模块来加载VOC2012数据集,并通过transforms模块来进行预处理。具体实现如下: ```python import torch import torchvision import torchvision.transforms as transforms # 定义预处理操作 transform = transforms.Compose([ transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 加载训练集和测试集 trainset = torchvision.datasets.VOCSegmentation(root='./data', year='2012', image_set='train', download=True, transform=transform) testset = torchvision.datasets.VOCSegmentation(root='./data', year='2012', image_set='val', download=True, transform=transform) # 创建数据加载器 trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False) ``` 接下来,我们开始实现第二步,定义LeNet网络结构。LeNet是一个经典的卷积神经网络结构,适合于处理类似MNIST这样的小图像数据。在本任务中,我们将其用于处理VOC2012数据集。具体实现如下: ```python import torch.nn as nn class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 20) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = LeNet() ``` 接下来,我们开始实现第三步,对LeNet进行训练,挖掘出具有频繁性和判别性的图片。具体实现如下: ```python import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('Finished Training') # 挖掘具有频繁性和判别性的图片 class_freq = [0] * 20 class_correct = [0] * 20 class_total = [0] * 20 for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(len(labels)): label = labels[i] class_freq[label] += 1 class_correct[label] += c[i].item() class_total[label] += 1 freq_threshold = 0.8 disc_threshold = 0.8 freq_imgs = [] disc_imgs = [] for i in range(20): freq_ratio = class_correct[i] / class_freq[i] disc_ratio = class_correct[i] / class_total[i] if freq_ratio > freq_threshold: freq_imgs.append(i) if disc_ratio > disc_threshold: disc_imgs.append(i) print("Frequently accurate classes: ", freq_imgs) print("Discriminative classes: ", disc_imgs) ``` 上述代码中,我们使用交叉熵损失函数和随机梯度下降优化器对LeNet进行训练,训练10个epoch。训练过程中,我们计算每个类别的分类准确率,并根据阈值挖掘出具有频繁性和判别性的图片。 最后一步是可视化挖掘出的图片。下面是一个简单的实现: ```python import matplotlib.pyplot as plt import numpy as np def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) # 显示具有频繁性的图片 freq_images = [] for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) for i in range(len(labels)): if labels[i].item() in freq_imgs: freq_images.append(images[i]) break fig = plt.figure(figsize=(10, 10)) for i in range(len(freq_images)): ax = fig.add_subplot(5, 5, i+1, xticks=[], yticks=[]) imshow(freq_images[i]) plt.show() # 显示具有判别性的图片 disc_images = [] for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) for i in range(len(labels)): if labels[i].item() in disc_imgs and labels[i].item() == predicted[i].item(): disc_images.append(images[i]) break fig = plt.figure(figsize=(10, 10)) for i in range(len(disc_images)): ax = fig.add_subplot(5, 5, i+1, xticks=[], yticks=[]) imshow(disc_images[i]) plt.show() ``` 上述代码中,我们首先从测试集中挑选出具有频繁性的图片和具有判别性的图片,然后将它们可视化出来。可以通过修改阈值来调整挖掘出的图片数量和质量。
阅读全文

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

pytorch学习教程之自定义数据集

在本教程中,我们将探讨如何在PyTorch环境中创建自定义数据集,包括数据的组织、数据集类的定义以及使用`DataLoader`进行批量加载。 首先,数据的组织通常是基于项目的结构,例如: ``` data |-- test | |-- dog |...
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

在PyTorch中构建神经网络可以分为几个关键步骤,这里我们将探讨如何使用PyTorch搭建简单的神经网络以实现回归和分类任务。 首先,我们需要了解PyTorch的基本组件。其中,`torch.Tensor`是核心数据结构,它类似于...
recommend-type

pytorch 实现数据增强分类 albumentations的使用

在机器学习领域,数据增强是一种重要的技术,它通过在训练数据上应用各种变换来增加模型的泛化能力。PyTorch作为一个流行的深度学习框架,虽然自带了`torchvision.transforms`模块用于数据增强,但其功能相对有限。...
recommend-type

pytorch 实现将自己的图片数据处理成可以训练的图片类型

在PyTorch中,训练深度学习模型通常需要将图片数据转换为特定的格式,以便模型能够有效处理。本文将详细讲解如何使用PyTorch将个人的图片数据转换为适合训练的格式。 首先,我们需要理解PyTorch的数据加载机制。...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。