bp神经网络预测GDP代码
时间: 2024-04-15 08:22:57 浏览: 100
BP神经网络预测股票,bp神经网络预测股票价格python代码,matlab
5星 · 资源好评率100%
BP神经网络是一种常用的机器学习算法,可以用于预测GDP等连续值的问题。下面是一个简单的BP神经网络预测GDP的代码示例:
```python
import numpy as np
# 定义BP神经网络类
class BPNeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# 初始化权重和偏置
self.weights1 = np.random.randn(self.input_size, self.hidden_size)
self.bias1 = np.random.randn(self.hidden_size)
self.weights2 = np.random.randn(self.hidden_size, self.output_size)
self.bias2 = np.random.randn(self.output_size)
# 定义激活函数(sigmoid函数)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
# 定义激活函数的导数(sigmoid函数的导数)
def sigmoid_derivative(self, x):
return x * (1 - x)
# 前向传播
def forward(self, X):
self.hidden_layer_output = self.sigmoid(np.dot(X, self.weights1) + self.bias1)
self.predicted_output = self.sigmoid(np.dot(self.hidden_layer_output, self.weights2) + self.bias2)
# 反向传播
def backward(self, X, y, learning_rate):
error = y - self.predicted_output
delta_output = error * self.sigmoid_derivative(self.predicted_output)
error_hidden = delta_output.dot(self.weights2.T)
delta_hidden = error_hidden * self.sigmoid_derivative(self.hidden_layer_output)
self.weights2 += self.hidden_layer_output.T.dot(delta_output) * learning_rate
self.bias2 += np.sum(delta_output) * learning_rate
self.weights1 += X.T.dot(delta_hidden) * learning_rate
self.bias1 += np.sum(delta_hidden) * learning_rate
# 训练模型
def train(self, X, y, epochs, learning_rate):
for epoch in range(epochs):
self.forward(X)
self.backward(X, y, learning_rate)
# 预测
def predict(self, X):
self.forward(X)
return self.predicted_output
# 创建BP神经网络对象
input_size = 10 # 输入层大小
hidden_size = 5 # 隐藏层大小
output_size = 1 # 输出层大小
bpnn = BPNeuralNetwork(input_size, hidden_size, output_size)
# 准备训练数据
X_train = np.random.randn(100, input_size) # 输入数据
y_train = np.random.randn(100, output_size) # 输出数据
# 训练模型
bpnn.train(X_train, y_train, epochs=1000, learning_rate=0.1)
# 准备测试数据
X_test = np.random.randn(10, input_size) # 输入数据
# 预测
predictions = bpnn.predict(X_test)
print(predictions)
```
这段代码实现了一个简单的BP神经网络,包括前向传播、反向传播、训练和预测等功能。你可以根据自己的需求进行修改和扩展。
阅读全文