class ComputeLoss: sort_obj_iou = False # Compute losses def __init__(self, model, autobalance=False): device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) m = de_parallel(model).model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance self.na = m.na # number of anchors self.nc = m.nc # number of classes self.nl = m.nl # number of layers self.anchors = m.anchors self.device = device这个代码什么意思
时间: 2023-06-27 09:04:32 浏览: 153
这段代码是定义了一个 ComputeLoss 类,用于计算 YOLOv5 模型的损失值。在初始化时,会根据模型的超参数定义不同的损失函数,包括分类损失 BCEcls、目标检测损失 BCEobj 和 Focal Loss。同时还对正负样本进行了平滑处理,以及为不同的特征层定义了不同的权重平衡。在计算损失时,会用到模型的输出以及一些超参数,最终返回损失值。
阅读全文