51单片机键盘输入计算器

时间: 2023-10-30 19:41:46 浏览: 251
要实现一个基于51单片机的键盘输入计算器,你需要以下步骤: 1. 确定硬件部分:键盘、LCD显示屏和51单片机。 2. 连接键盘和LCD显示屏至51单片机。可以使用矩阵键盘连接,通过扫描键盘来获取用户的输入。 3. 编写程序,通过读取键盘输入并在LCD屏幕上显示数字和操作符来实现计算器的基本功能。 4. 实现计算逻辑,即将用户的输入转化为数学表达式并计算结果。可以使用栈来实现中缀表达式转后缀表达式,然后计算后缀表达式的值。 5. 调试程序并测试计算器。 这是一个简单的框架,你可以根据需要进行修改和完善,例如添加更多的运算符和函数,实现括号功能等。
相关问题

51单片机矩阵键盘计算器

对于使用51单片机的矩阵键盘计算器,你可以通过以下步骤进行设计和实现: 1. 连接矩阵键盘:将矩阵键盘的行和列引脚连接到51单片机的GPIO口。通常,矩阵键盘由若干行和若干列组成,可以通过将行与列交叉连接来实现多个按键的输入。 2. 初始化GPIO口:在51单片机的代码中,你需要初始化GPIO口的状态和方向。将矩阵键盘的行作为输出,列作为输入。通过按下不同的按键,可以在特定的行和列上建立连接。 3. 扫描按键:通过循环扫描按键,检测按下的按键。你可以按下一个按键后,逐个扫描行和列,以确定按下的是哪个按键。 4. 处理按键输入:一旦检测到按下的按键,你可以通过编程来处理它。根据你的需求,你可以进行加法、减法、乘法、除法等运算。你可以使用相应的算法和数据结构来实现这些操作,并在LCD显示屏上显示结果。 5. 显示结果:连接一个LCD显示屏到51单片机上,并将结果显示在屏幕上。你可以使用合适的LCD库或编程方法来控制显示。 需要注意的是,上述步骤是一个简要的概述,并且具体的实现方法可能因硬件和软件环境而有所不同。你可能需要查阅相关资料和手册,以了解更多关于51单片机和矩阵键盘的详细信息。

写一个键盘输入计算器的51单片机程序

以下是一个简单的键盘输入计算器的51单片机程序,可以实现加减乘除四则运算: ``` #include <reg51.h> sbit k1 = P2^0; // 定义k1按键 sbit k2 = P2^1; // 定义k2按键 sbit k3 = P2^2; // 定义k3按键 sbit k4 = P2^3; // 定义k4按键 sbit k5 = P2^4; // 定义k5按键 sbit k6 = P2^5; // 定义k6按键 sbit k7 = P2^6; // 定义k7按键 sbit k8 = P2^7; // 定义k8按键 sbit lcd_rs = P1^0; // LCD1602的RS引脚 sbit lcd_rw = P1^1; // LCD1602的RW引脚 sbit lcd_en = P1^2; // LCD1602的EN引脚 void delay(unsigned int i) // 延时函数 { while(i--); } void lcd_write_cmd(unsigned char cmd) // 写指令函数 { lcd_rs = 0; lcd_rw = 0; lcd_en = 1; P0 = cmd; delay(10); lcd_en = 0; } void lcd_write_data(unsigned char dat) // 写数据函数 { lcd_rs = 1; lcd_rw = 0; lcd_en = 1; P0 = dat; delay(10); lcd_en = 0; } void lcd_init() // LCD1602初始化函数 { lcd_write_cmd(0x38); // 显示模式设置:16×2,5×7点阵,8位数据接口 lcd_write_cmd(0x0c); // 显示控制:显示开,光标关,不闪烁 lcd_write_cmd(0x06); // 输入模式:光标右移,字符不移动 lcd_write_cmd(0x01); // 清屏 } void lcd_display(unsigned char *str) // LCD1602显示字符串函数 { while(*str) { lcd_write_data(*str++); } } void main() { unsigned char num1 = 0; // 存储第一个数字 unsigned char num2 = 0; // 存储第二个数字 unsigned char op = '+'; // 存储运算符,默认为加号 unsigned char result = 0; // 存储运算结果 unsigned char buf[16]; // 存储LCD1602显示的字符串 lcd_init(); // LCD1602初始化 while(1) { if(k1 == 0) // 如果按下了数字键1 { num1 = num1 * 10 + 1; // 将1加到num1中 lcd_display("1"); // LCD1602显示1 delay(1000); // 延时消抖 } else if(k2 == 0) // 如果按下了数字键2 { num1 = num1 * 10 + 2; // 将2加到num1中 lcd_display("2"); // LCD1602显示2 delay(1000); // 延时消抖 } else if(k3 == 0) // 如果按下了数字键3 { num1 = num1 * 10 + 3; // 将3加到num1中 lcd_display("3"); // LCD1602显示3 delay(1000); // 延时消抖 } else if(k4 == 0) // 如果按下了加号键 { op = '+'; // 存储加号运算符 lcd_display("+"); // LCD1602显示加号 delay(1000); // 延时消抖 } else if(k5 == 0) // 如果按下了数字键4 { num2 = num2 * 10 + 4; // 将4加到num2中 lcd_display("4"); // LCD1602显示4 delay(1000); // 延时消抖 } else if(k6 == 0) // 如果按下了数字键5 { num2 = num2 * 10 + 5; // 将5加到num2中 lcd_display("5"); // LCD1602显示5 delay(1000); // 延时消抖 } else if(k7 == 0) // 如果按下了数字键6 { num2 = num2 * 10 + 6; // 将6加到num2中 lcd_display("6"); // LCD1602显示6 delay(1000); // 延时消抖 } else if(k8 == 0) // 如果按下了等号键 { switch(op) // 根据运算符进行计算 { case '+': result = num1 + num2; break; case '-': result = num1 - num2; break; case '*': result = num1 * num2; break; case '/': result = num1 / num2; break; default: break; } sprintf(buf, "=%d", result); // 将运算结果转换为字符串 lcd_display(buf); // LCD1602显示运算结果 delay(1000); // 延时消抖 num1 = num2 = result = 0; // 清零 } else // 如果没有按键按下 { delay(100); // 延时一段时间 } } } ``` 需要注意的是,上述程序中的LCD1602显示函数需要根据具体的LCD1602型号和接线来进行调整。同时,由于51单片机计算能力有限,本程序只能进行简单的整数四则运算,不能进行浮点数运算。
阅读全文

相关推荐

大家在看

recommend-type

伺服环修正参数-Power PMAC

伺服环修正参数 Ix59: 用户自写伺服/换向算法 使能 =0: 使用标准PID算法, 标准换向算法 =1: 使用自写伺服算法, 标准换向算法 =2: 使用标准PID算法,自写换向算法 =3: 使用自写伺服算法,自写换向算法 Ix60: 伺服环周期扩展 每 (Ix60+1) 个伺服中断闭环一次 用于慢速,低分辨率的轴 用于处理控制 “轴” NEW IDEAS IN MOTION
recommend-type

微软--项目管理软件质量控制实践篇(一)(二)(三)

因为工作在微软的缘故,无论我在给国内企业做软件测试内训的时候,还是在质量技术大会上做演讲的时候,问的最多的一个问题就是:微软如何做测试的?前几天看见有人在新浪微博上讨论是否需要专职QA,再有我刚刚决定带领两个google在西雅图的测试工程师一起翻译google的新书《howgoogletestssoftware》。微软以前也有一本书《howwetestsoftwareatmicrosoft》。所以几件事情碰到一起,有感而发,决定写一个“xx公司如何测试的”系列文章。目的不是为了回答以上问题,旨在通过分析对比如Microsoft,Google,Amazon,Facebook等在保证产品质量的诸多
recommend-type

robotstudio sdk二次开发 自定义组件 Logger输出和加法器(C#代码和学习笔记)

图书robotstudio sdk二次开发中第4章 第4节 自定义组件 Logger输出和加法器,C#写的代码,和本人实现截图
recommend-type

chfenger-Waverider-master0_乘波体_

对乘波体进行建模,可以通过in文件输入马赫数、内锥角等参数,得到锥导乘波体的坐标点
recommend-type

宽带信号下阻抗失配引起的群时延变化的一种计算方法 (2015年)

在基于时延测量的高精度测量设备中,对群时延测量的精度要求非常苛刻。在电路实现的过程中,阻抗失配是一种必然存在的现象,这种现象会引起信号传输过程中群时延的变化。电路实现过程中影响阻抗的一个很重要的现象便是趋肤效应,因此在研究阻抗失配对群时延影响时必须要考虑趋肤效应对阻抗的影响。结合射频电路理论、传输线理路、趋肤效应理论,提出了一种宽带信号下阻抗失配引起的群时延变化的一种方法。并以同轴电缆为例进行建模,利用Matlab软件计算该方法的精度并与ADS2009软件的仿真结果进行比对。群时延精度在宽带信号下可达5‰

最新推荐

recommend-type

基于AT89C51单片机简易计算器的设计.doc

基于AT89C51单片机简易计算器的设计 本设计是一个简单的计算器,基于AT89C51单片机,使用C语言编程,PROTUES仿真,可以进行四则运算(加、减、乘、除),并在LED上显示相应的结果。 一、设计目的 单片机的出现是...
recommend-type

基于AT89C51单片机的十进制计算器系统设计

本文所介绍的基于AT89C51单片机设计的十进制计算器系统,不仅是一个实用的计算工具,更是一个深入理解单片机及嵌入式系统设计的典型案例。 AT89C51单片机作为一种经典的8位微控制器,拥有丰富的指令集和多种内置...
recommend-type

51单片机设计(计算器和倒车雷达)

【51单片机设计——计算器与倒车雷达】 51单片机是基于Intel 8051微控制器架构的集成电路,广泛应用于各种电子设备的控制,包括计算器和倒车雷达等。在这个课程设计中,学生需要通过编程实现三个程序,以提升对...
recommend-type

单片机设计简易计算器 单片机设计简易计算器 单片机设计简易计算器

单片机设计简易计算器是一项基于微控制器技术的实践任务,主要目标是利用常见的单片机元件构建一个功能简单的计算器。这个设计中,我们通常会选用常见的8位微控制器,例如MCS-51系列的单片机,因为它具有丰富的外设...
recommend-type

HTML挑战:30天技术学习之旅

资源摘要信息: "desafio-30dias" 标题 "desafio-30dias" 暗示这可能是一个与挑战或训练相关的项目,这在编程和学习新技能的上下文中相当常见。标题中的数字“30”很可能表明这个挑战涉及为期30天的时间框架。此外,由于标题是西班牙语,我们可以推测这个项目可能起源于或至少是针对西班牙语使用者的社区。标题本身没有透露技术上的具体内容,但挑战通常涉及一系列任务,旨在提升个人的某项技能或知识水平。 描述 "desafio-30dias" 并没有提供进一步的信息,它重复了标题的内容。因此,我们不能从中获得关于项目具体细节的额外信息。描述通常用于详细说明项目的性质、目标和期望成果,但由于这里没有具体描述,我们只能依靠标题和相关标签进行推测。 标签 "HTML" 表明这个挑战很可能与HTML(超文本标记语言)有关。HTML是构成网页和网页应用基础的标记语言,用于创建和定义内容的结构、格式和语义。由于标签指定了HTML,我们可以合理假设这个30天挑战的目的是学习或提升HTML技能。它可能包含创建网页、实现网页设计、理解HTML5的新特性等方面的任务。 压缩包子文件的文件名称列表 "desafio-30dias-master" 指向了一个可能包含挑战相关材料的压缩文件。文件名中的“master”表明这可能是一个主文件或包含最终版本材料的文件夹。通常,在版本控制系统如Git中,“master”分支代表项目的主分支,用于存放项目的稳定版本。考虑到这个文件名称的格式,它可能是一个包含所有相关文件和资源的ZIP或RAR压缩文件。 结合这些信息,我们可以推测,这个30天挑战可能涉及了一系列的编程任务和练习,旨在通过实践项目来提高对HTML的理解和应用能力。这些任务可能包括设计和开发静态和动态网页,学习如何使用HTML5增强网页的功能和用户体验,以及如何将HTML与CSS(层叠样式表)和JavaScript等其他技术结合,制作出丰富的交互式网站。 综上所述,这个项目可能是一个为期30天的HTML学习计划,设计给希望提升前端开发能力的开发者,尤其是那些对HTML基础和最新标准感兴趣的人。挑战可能包含了理论学习和实践练习,鼓励参与者通过构建实际项目来学习和巩固知识点。通过这样的学习过程,参与者可以提高在现代网页开发环境中的竞争力,为创建更加复杂和引人入胜的网页打下坚实的基础。
recommend-type

【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)

![【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)](https://www.debugpoint.com/wp-content/uploads/2020/07/wxwidgets.jpg) # 摘要 本文旨在为使用CodeBlocks和wxWidgets库的开发者提供详细的安装、配置、实践操作指南和性能优化建议。文章首先介绍了CodeBlocks和wxWidgets库的基本概念和安装流程,然后深入探讨了CodeBlocks的高级功能定制和wxWidgets的架构特性。随后,通过实践操作章节,指导读者如何创建和运行一个wxWidgets项目,包括界面设计、事件
recommend-type

andorid studio 配置ERROR: Cause: unable to find valid certification path to requested target

### 解决 Android Studio SSL 证书验证问题 当遇到 `unable to find valid certification path` 错误时,这通常意味着 Java 运行环境无法识别服务器提供的 SSL 证书。解决方案涉及更新本地的信任库或调整项目中的网络请求设置。 #### 方法一:安装自定义 CA 证书到 JDK 中 对于企业内部使用的私有 CA 颁发的证书,可以将其导入至 JRE 的信任库中: 1. 获取 `.crt` 或者 `.cer` 文件形式的企业根证书; 2. 使用命令行工具 keytool 将其加入 cacerts 文件内: ```
recommend-type

VC++实现文件顺序读写操作的技巧与实践

资源摘要信息:"vc++文件的顺序读写操作" 在计算机编程中,文件的顺序读写操作是最基础的操作之一,尤其在使用C++语言进行开发时,了解和掌握文件的顺序读写操作是十分重要的。在Microsoft的Visual C++(简称VC++)开发环境中,可以通过标准库中的文件操作函数来实现顺序读写功能。 ### 文件顺序读写基础 顺序读写指的是从文件的开始处逐个读取或写入数据,直到文件结束。这与随机读写不同,后者可以任意位置读取或写入数据。顺序读写操作通常用于处理日志文件、文本文件等不需要频繁随机访问的文件。 ### VC++中的文件流类 在VC++中,顺序读写操作主要使用的是C++标准库中的fstream类,包括ifstream(用于从文件中读取数据)和ofstream(用于向文件写入数据)两个类。这两个类都是从fstream类继承而来,提供了基本的文件操作功能。 ### 实现文件顺序读写操作的步骤 1. **包含必要的头文件**:要进行文件操作,首先需要包含fstream头文件。 ```cpp #include <fstream> ``` 2. **创建文件流对象**:创建ifstream或ofstream对象,用于打开文件。 ```cpp ifstream inFile("example.txt"); // 用于读操作 ofstream outFile("example.txt"); // 用于写操作 ``` 3. **打开文件**:使用文件流对象的成员函数open()来打开文件。如果不需要在创建对象时指定文件路径,也可以在对象创建后调用open()。 ```cpp inFile.open("example.txt", std::ios::in); // 以读模式打开 outFile.open("example.txt", std::ios::out); // 以写模式打开 ``` 4. **读写数据**:使用文件流对象的成员函数进行数据的读取或写入。对于读操作,可以使用 >> 运算符、get()、read()等方法;对于写操作,可以使用 << 运算符、write()等方法。 ```cpp // 读取操作示例 char c; while (inFile >> c) { // 处理读取的数据c } // 写入操作示例 const char *text = "Hello, World!"; outFile << text; ``` 5. **关闭文件**:操作完成后,应关闭文件,释放资源。 ```cpp inFile.close(); outFile.close(); ``` ### 文件顺序读写的注意事项 - 在进行文件读写之前,需要确保文件确实存在,且程序有足够的权限对文件进行读写操作。 - 使用文件流进行读写时,应注意文件流的错误状态。例如,在读取完文件后,应检查文件流是否到达文件末尾(failbit)。 - 在写入文件时,如果目标文件不存在,某些open()操作会自动创建文件。如果文件已存在,open()操作则会清空原文件内容,除非使用了追加模式(std::ios::app)。 - 对于大文件的读写,应考虑内存使用情况,避免一次性读取过多数据导致内存溢出。 - 在程序结束前,应该关闭所有打开的文件流。虽然文件流对象的析构函数会自动关闭文件,但显式调用close()是一个好习惯。 ### 常用的文件操作函数 - `open()`:打开文件。 - `close()`:关闭文件。 - `read()`:从文件读取数据到缓冲区。 - `write()`:向文件写入数据。 - `tellg()` 和 `tellp()`:分别返回当前读取位置和写入位置。 - `seekg()` 和 `seekp()`:设置文件流的位置。 ### 总结 在VC++中实现顺序读写操作,是进行文件处理和数据持久化的基础。通过使用C++的标准库中的fstream类,我们可以方便地进行文件读写操作。掌握文件顺序读写不仅可以帮助我们在实际开发中处理数据文件,还可以加深我们对C++语言和文件I/O操作的理解。需要注意的是,在进行文件操作时,合理管理和异常处理是非常重要的,这有助于确保程序的健壮性和数据的安全。
recommend-type

【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅

![【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅](https://media.licdn.com/dms/image/C4E12AQGM8ZXs7WruGA/article-cover_image-shrink_600_2000/0/1601775240690?e=2147483647&v=beta&t=9j23mUG6vOHnuI7voc6kzoWy5mGsMjHvqq5ZboqBjjo) # 摘要 Hadoop作为一个开源的分布式存储和计算框架,在大数据处理领域发挥着举足轻重的作用。本文首先对Hadoop进行了概述,并介绍了其生态系统中的核心组件。深入分
recommend-type

opencv的demo程序

### OpenCV 示例程序 #### 图像读取与显示 下面展示如何使用 Python 接口来加载并显示一张图片: ```python import cv2 # 加载图像 img = cv2.imread('path_to_image.jpg') # 创建窗口用于显示图像 cv2.namedWindow('image', cv2.WINDOW_AUTOSIZE) # 显示图像 cv2.imshow('image', img) # 等待按键事件 cv2.waitKey(0) # 销毁所有创建的窗口 cv2.destroyAllWindows() ``` 这段代码展示了最基本的图