python多目标优化 nsga-ii code
时间: 2023-09-02 14:09:04 浏览: 135
nsga2_pythonnsga_NSGA_python优化_NSGA-IIPYTHON_NSGA-II
5星 · 资源好评率100%
下面是一个简单的Python多目标优化NSGA-II代码示例:
```python
import random
import math
# 定义目标函数
def objectives(x):
f1 = x[0]**2 + x[1]**2
f2 = (x[0]-1)**2 + x[1]**2
return [f1, f2]
# 定义NSGA-II算法
def nsga2(population, n_obj, n_var, n_pop, n_gen):
# 初始化种群
for i in range(n_pop):
for j in range(n_var):
population[i][j] = random.uniform(-5, 5)
# 进行n_gen代的进化
for g in range(n_gen):
# 计算每个个体的目标函数值
for i in range(n_pop):
population[i][n_var:] = objectives(population[i][:n_var])
# 对每个目标函数进行排序和计算拥挤度
fronts = [[] for i in range(n_pop)]
for i in range(n_pop):
fronts[i] = []
for j in range(n_pop):
if i == j:
continue
if dominates(population[i][n_var:], population[j][n_var:]):
fronts[i].append(j)
elif dominates(population[j][n_var:], population[i][n_var:]):
population[i][-1] += 1
if population[i][-1] == 0:
fronts[i] = [i]
# 选择下一代种群
new_pop = []
front_index = 0
while len(new_pop) < n_pop:
if len(fronts[front_index]) + len(new_pop) <= n_pop:
new_pop += fronts[front_index]
front_index += 1
else:
crowding_distances = [0] * len(fronts[front_index])
for i in range(n_obj):
sorted_index = sorted(range(len(fronts[front_index])), key=lambda x: population[fronts[front_index][x]][n_var+i])
crowding_distances[sorted_index[0]] += math.inf
crowding_distances[sorted_index[-1]] += math.inf
for j in range(1, len(sorted_index)-1):
crowding_distances[sorted_index[j]] += population[fronts[front_index][sorted_index[j+1]]][n_var+i] - population[fronts[front_index][sorted_index[j-1]]][n_var+i]
sorted_index = sorted(range(len(fronts[front_index])), key=lambda x: crowding_distances[x], reverse=True)
new_pop += [fronts[front_index][i] for i in sorted_index[:n_pop-len(new_pop)]]
# 生成新的种群
population = [population[i] for i in new_pop]
# 返回最终种群
return population
# 判断一个解是否被另一个解支配
def dominates(x, y):
return all([x[i] <= y[i] for i in range(len(x))]) and any([x[i] < y[i] for i in range(len(x))])
# 测试代码
if __name__ == '__main__':
n_obj = 2
n_var = 2
n_pop = 50
n_gen = 100
population = [[0]*(n_var+n_obj+1) for i in range(n_pop)]
pareto_front = nsga2(population, n_obj, n_var, n_pop, n_gen)
for i in range(n_pop):
print(pareto_front[i][:n_var], pareto_front[i][n_var:])
```
该代码实现了一个简单的NSGA-II算法,用于求解具有2个目标函数和2个决策变量的多目标优化问题。在该代码中,目标函数为$f_1(x)=x_1^2+x_2^2$和$f_2(x)=(x_1-1)^2+x_2^2$,决策变量的范围为$x_1\in[-5,5]$和$x_2\in[-5,5]$。
阅读全文