有参考代码吗?
时间: 2023-08-04 10:02:41 浏览: 118
是的,以下是一个使用PyTorch搭建的GPT-2模型的参考代码,供您参考:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class GPT2(nn.Module):
def __init__(self, n_vocab, n_ctx, n_embd, n_head, n_layer):
super(GPT2, self).__init__()
self.n_vocab = n_vocab
self.n_ctx = n_ctx
self.n_embd = n_embd
self.n_head = n_head
self.n_layer = n_layer
self.wte = nn.Embedding(n_vocab, n_embd)
self.wpe = nn.Embedding(n_ctx, n_embd)
self.drop = nn.Dropout(0.1)
self.h = nn.ModuleList([Block(n_embd, n_head, n_ctx) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd, eps=1e-5)
self.init_weights()
def init_weights(self):
nn.init.normal_(self.wte.weight, std=0.02)
nn.init.normal_(self.wpe.weight, std=0.01)
nn.init.normal_(self.ln_f.weight, std=0.02)
nn.init.zeros_(self.ln_f.bias)
def forward(self, input_ids, position_ids=None, token_type_ids=None):
if position_ids is None:
position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
input_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
token_type_embeds = self.wte(token_type_ids)
hidden_states = input_embeds + position_embeds + token_type_embeds
hidden_states = self.drop(hidden_states)
for i in range(self.n_layer):
block = self.h[i]
hidden_states = block(hidden_states)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class Block(nn.Module):
def __init__(self, n_embd, n_head, n_ctx):
super(Block, self).__init__()
self.n_embd = n_embd
self.n_head = n_head
self.ln_1 = nn.LayerNorm(n_embd, eps=1e-5)
self.attn = Attention(n_embd, n_head, n_ctx)
self.ln_2 = nn.LayerNorm(n_embd, eps=1e-5)
self.mlp = MLP(n_embd*4, n_embd)
def forward(self, x):
h = x
x = self.ln_1(x)
x = self.attn(x)
x = h + x
h = x
x = self.ln_2(x)
x = self.mlp(x)
x = h + x
return x
class Attention(nn.Module):
def __init__(self, n_embd, n_head, n_ctx):
super(Attention, self).__init__()
self.n_embd = n_embd
self.n_head = n_head
self.split_size = n_embd // n_head
self.scale = self.split_size ** -0.5
self.c_attn = nn.Linear(n_embd, n_embd*3)
self.c_proj = nn.Linear(n_embd, n_embd)
def split_heads(self, x):
x = x.view(x.shape[0], x.shape[1], self.n_head, self.split_size)
return x.permute(0, 2, 1, 3)
def forward(self, x):
qkv = self.c_attn(x)
q, k, v = torch.split(qkv, qkv.shape[-1] // 3, dim=-1)
q = self.split_heads(q)
k = self.split_heads(k)
v = self.split_heads(v)
scores = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn_weights = F.softmax(scores, dim=-1)
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
attn_output = attn_output.view(attn_output.shape[0], attn_output.shape[1], -1)
attn_output = self.c_proj(attn_output)
return attn_output
class MLP(nn.Module):
def __init__(self, n_embd, n_hidden):
super(MLP, self).__init__()
self.n_embd = n_embd
self.n_hidden = n_hidden
self.c_fc = nn.Linear(n_embd, n_hidden)
self.c_proj = nn.Linear(n_hidden, n_embd)
def forward(self, x):
x = F.gelu(self.c_fc(x))
x = self.c_proj(x)
return x
```
此代码实现了一个基于GPT-2的语言模型,包括基本的Attention机制、LayerNorm、MLP等模块。您可以根据需要进行修改和扩展。
阅读全文