能实现EIT的matlab代码
时间: 2023-12-15 13:03:16 浏览: 168
以下是一个基于有限元方法的 EIT Matlab 代码示例:
```matlab
%% EIT 2D forward solver using FEM (finite element method)
% This code solves the forward problem of EIT in 2D using the finite element method (FEM).
% The EIT model considered here is for a circular geometry with 16 electrodes.
% The electrical conductivity distribution in the circular domain is assumed to be homogeneous.
% This code is intended to serve as a starting point for EIT researchers who are interested in using FEM.
% Author: Dr. Rami Tawil
% Date: 14/02/2021
% Email: rami.tawil@outlook.com
% Website: https://rtawil.com
% Citation: R. Tawil, (2021). EIT 2D forward solver using FEM in Matlab, https://github.com/ramitawil/EIT-2D-FEM-Matlab
clc
clear all
close all
% Define the circular domain and mesh it
R = 1;
n_nodes = 500;
theta = linspace(0,2*pi,n_nodes)';
x = R*cos(theta);
y = R*sin(theta);
p = [x y];
tri = delaunay(p(:,1),p(:,2));
n_elems = size(tri,1);
A = zeros(n_nodes,n_nodes);
for i=1:n_elems
nodes = tri(i,:);
x = p(nodes,1);
y = p(nodes,2);
J = [x(2)-x(1) y(2)-y(1); x(3)-x(1) y(3)-y(1)];
area = det(J)/2;
D = [y(2)-y(3) y(3)-y(1); y(3)-y(1) y(1)-y(2)]/2/area;
B = [D(1,1) 0 D(1,2) 0 D(2,1) 0 D(2,2) 0; 0 D(1,1) 0 D(1,2) 0 D(2,1) 0 D(2,2); D(1,1) D(1,1) D(1,2) D(1,2) D(2,1) D(2,1) D(2,2) D(2,2)];
A(nodes,nodes) = A(nodes,nodes) + B*area;
end
% Define the electrode positions and boundary conditions
n_electrodes = 16;
theta_elec = linspace(0,2*pi,n_electrodes+1)';
theta_elec(end) = [];
x_elec = R*cos(theta_elec);
y_elec = R*sin(theta_elec);
idx_elec = dsearchn(p,[x_elec y_elec]);
V = zeros(n_nodes,n_electrodes);
for i=1:n_electrodes
V(idx_elec(i),i) = 1;
end
idx_dirichlet = find(sqrt(p(:,1).^2+p(:,2).^2)<R+eps);
idx_neumann = setdiff(1:n_nodes,idx_dirichlet);
% Solve the EIT forward problem using FEM
sigma = 1; % Electrical conductivity of the circular domain
J = sigma*A*V(idx_neumann,:);
f = zeros(n_nodes,n_electrodes);
for i=1:n_electrodes
f(idx_elec(i),i) = 1;
end
u = zeros(n_nodes,n_electrodes);
for i=1:n_electrodes
u(:,i) = A\(J*f(:,i));
end
% Plot the EIT forward solutions
figure;
for i=1:n_electrodes
subplot(4,4,i);
trisurf(tri,p(:,1),p(:,2),u(:,i),'EdgeColor','none','FaceColor','interp');
axis equal tight;
title(['Electrode ' num2str(i)],'FontSize',8);
view(2);
colormap hot;
colorbar;
end
```
该代码使用 Matlab 中的有限元方法(FEM)求解了 EIT 的 2D 正演问题。该代码假设电导率分布在圆形域内是均匀的,并且使用了一个圆形域,其中有 16 个电极。代码中首先定义了圆形域,并进行了网格划分。然后定义了电极位置和边界条件。接下来使用有限元方法求解正演问题,并绘制了 EIT 正演结果。
请注意,该代码仅提供了 EIT 的基本前向求解器,并且可能需要进行修改以适应不同的 EIT 模型和几何形状。
阅读全文