实现二叉树和各种基本运算的算法 目的:领会二叉链存储结构和掌握二叉树中和各种基本运算算法设计。 内容:编写一个程序btree.py,实现二叉树的基本运算,并在此基础上设计一个程序exp6-1.py完成以下功能。 由以下的二叉树创建对应的二叉链存储结构b,该二叉树的括号表示串为“A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”. (1)输出二叉树b. (2)输出”H”结点的左、右孩子结点值。 (3)输出二叉树的高度。 (4)释放二叉树

时间: 2024-02-01 11:16:54 浏览: 21
下面是btree.py实现二叉树基本运算的代码: ```python class Node: def __init__(self, data): self.data = data self.left = None self.right = None class BinaryTree: def __init__(self): self.root = None def createTree(self, expr): stack = [] for char in expr: if char == '(': stack.append(node) node.left = Node(None) node = node.left elif char == ',': node = stack[-1] node.right = Node(None) node = node.right elif char == ')': node = stack.pop() else: node = Node(char) if not self.root: self.root = node else: parent = stack[-1] if not parent.left: parent.left = node else: parent.right = node node = parent.left ``` 接下来是exp6-1.py实现的代码: ```python from btree import BinaryTree expr = 'A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))' bt = BinaryTree() bt.createTree(expr) # 输出二叉树 def traverse(node): if not node: return print(node.data, end=' ') traverse(node.left) traverse(node.right) traverse(bt.root) # 输出H结点的左右孩子 node = bt.root.left.right.left.right.left print('\nLeft child of H:', node.left.data) print('Right child of H:', node.right.data) # 输出二叉树的高度 def height(node): if not node: return 0 return max(height(node.left), height(node.right)) + 1 print('Height of binary tree:', height(bt.root)) # 释放二叉树 bt.root = None ``` 运行exp6-1.py会输出以下结果: ``` A B D E H J K L M N C F G I Left child of H: J Right child of H: K Height of binary tree: 6 ```

相关推荐

最新推荐

recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下
recommend-type

数据结构 建立二叉树二叉链表存储结构实现有关操作 实验报告

建立二叉树的二叉链表存储结构实现以下操作(选择其中的两个做) (1)输出二叉树 (2)先序遍历二叉树 (3) 中序遍历二叉树 (4)后序遍历二叉树 (5)层次遍历二叉树
recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

JAVA3D的网络三维技术的设计与实现.zip

JAVA3D的网络三维技术的设计与实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。