基于fpga的数字频率计

时间: 2023-06-03 09:03:28 浏览: 27
这个问题不涉及政治问题,所以我可以回答。基于FPGA的数字频率计是一种可以通过FPGA实现的电子仪器,用于测量频率和周期等参数。它可以实现高精度、高速度的数字信号处理,被广泛应用于通信、雷达、仪器仪表等领域。
相关问题

ad绘制基于FPGA数字频率计

实现数字频率计需要进行以下步骤: 1. 信号采集:使用FPGA中的ADC模块对输入信号进行采样。 2. 信号处理:对采集到的信号进行数字信号处理,包括滤波、去噪、放大等处理。 3. 频率计算:通过计算处理后的信号的周期或脉宽,计算出输入信号的频率。 4. 数字显示:将计算得到的频率以数字形式显示在LED数码管上。 下面是一个基于Verilog语言的FPGA数字频率计的代码示例: ```verilog module frequency_counter( input clk, //时钟 input rst_n, //复位信号 input [15:0] adc_in, //ADC采集的输入信号 output reg [15:0] freq_disp //显示频率的数码管 ); reg [31:0] counter = 0; //计数器 reg [31:0] period = 0; //周期 always @ (posedge clk or negedge rst_n) begin if (~rst_n) begin counter <= 0; period <= 0; end else begin if (adc_in > 32767 && counter == 0) begin //上升沿触发 counter <= 1; end else if (adc_in < 32767 && counter == 1) begin //下降沿触发 counter <= 0; period <= $time; //记录当前时间 end end end always @ (posedge clk or negedge rst_n) begin if (~rst_n) begin freq_disp <= 0; end else begin if (period != 0) begin freq_disp <= 50000000 / (period - $time); //计算频率并显示 end end end endmodule ``` 以上代码中,通过记录采样到信号的上升沿和下降沿的时间,计算出信号的周期,并根据公式$f=1/T$计算出信号的频率,并显示在数码管上。注意在本示例中,假设FPGA的时钟频率为50MHz,因此计算频率的公式中使用了常数50000000。

基于fpga数字频率计包含计数,分频,锁存,译码显示模块等的verilog代码

好的,以下是一个基于FPGA数字频率计的Verilog代码示例,包含计数、分频、锁存、译码显示模块等: ``` module freq_counter( input clk, //时钟信号 input reset, //复位信号 input [7:0] prescaler, //分频系数 output reg [15:0] count, //计数器输出 output reg [3:0] digit0, //第一位数码管输出 output reg [3:0] digit1, //第二位数码管输出 output reg [3:0] digit2, //第三位数码管输出 output reg [3:0] digit3 //第四位数码管输出 ); reg [7:0] prescaler_reg; //分频器计数器 reg [3:0] decoder; //译码器输出 reg [3:0] digit; //数码管显示 reg [1:0] digit_sel; //数码管选择信号 reg [15:0] count_reg; //计数器寄存器,用于锁存计数值 always @(posedge clk or posedge reset) begin if(reset) begin prescaler_reg <= 0; count_reg <= 0; decoder <= 4'b1111; digit_sel <= 2'b00; digit <= 4'b1111; end else begin //计数器模块 count <= count_reg; count_reg <= count_reg + 1; //分频器模块 if(prescaler_reg >= prescaler - 1) begin prescaler_reg <= 0; end else begin prescaler_reg <= prescaler_reg + 1; end //锁存模块 if(prescaler_reg == 0) begin count_reg <= count; end //译码器模块 case(count_reg[15:12]) 4'b0000: decoder <= 4'b11111100; //0 4'b0001: decoder <= 4'b01100000; //1 4'b0010: decoder <= 4'b11011010; //2 4'b0011: decoder <= 4'b11110010; //3 4'b0100: decoder <= 4'b01100110; //4 4'b0101: decoder <= 4'b10110110; //5 4'b0110: decoder <= 4'b10111110; //6 4'b0111: decoder <= 4'b11100000; //7 4'b1000: decoder <= 4'b11111110; //8 4'b1001: decoder <= 4'b11110110; //9 4'b1010: decoder <= 4'b11101110; //A 4'b1011: decoder <= 4'b00111110; //B 4'b1100: decoder <= 4'b10011100; //C 4'b1101: decoder <= 4'b01111010; //D 4'b1110: decoder <= 4'b10011110; //E 4'b1111: decoder <= 4'b10001110; //F endcase //数码管显示模块 case(digit_sel) 2'b00: begin digit <= decoder[3:0]; digit0 <= digit; digit_sel <= 2'b01; end 2'b01: begin digit <= decoder[7:4]; digit1 <= digit; digit_sel <= 2'b10; end 2'b10: begin digit <= decoder[11:8]; digit2 <= digit; digit_sel <= 2'b11; end 2'b11: begin digit <= decoder[15:12]; digit3 <= digit; digit_sel <= 2'b00; end endcase end end endmodule ``` 请注意,这只是一个简单的示例代码,具体的实现可能因硬件平台和需求而异。希望这能对您有所帮助。

相关推荐

基于 FPGA 的数字频率计与数字计频器的设计基本原理类似,其主要功能是测量输入信号的频率,并将测量结果显示在数字显示器或计算机界面上。 基于 FPGA 的数字频率计的基本原理是将输入信号作为计数器的时钟信号,并通过 FPGA 内部的计数器实现对输入信号的计数。在计数器达到其最大值时,会产生一个溢出信号,此时计数器的值被清零,重新开始计数。通过测量计数器计数的时间间隔,可以计算出输入信号的频率。 与数字计频器不同的是,数字频率计需要通过时钟管理模块生成固定的测量时间间隔,以确保测量结果的准确性和稳定性。此外,数字频率计还需要实现测量结果的显示和保存功能。数字频率计可以通过数字显示器、计算机界面或通信接口等方式将测量结果显示出来,并可以将结果保存到外部存储器或计算机中。 下面是一个基于 FPGA 的数字频率计的简单设计流程: 1. 设计计数器模块:该模块接收输入信号并实现计数器递增和溢出重置功能。 2. 设计时钟管理模块:该模块使用 PLL 生成固定的测量时间间隔,并对输入信号进行时钟同步。 3. 设计频率计算模块:该模块使用计数器的值和固定时间间隔计算输入信号的频率。 4. 设计显示和存储模块:该模块实现测量结果的显示和保存功能。 5. 设计控制模块:该模块实现数字频率计的启动、停止、清零等控制功能。 6. 进行综合、布局和布线:将设计的模块综合成逻辑网表,进行布局和布线,生成可下载到 FPGA 的位流文件。 7. 下载位流文件到 FPGA:将位流文件下载到 FPGA 中,并进行调试和测试。 通过上述设计流程,可以实现基于 FPGA 的数字频率计的设计,具有高精度、高可靠性和灵活性的优点。

最新推荐

FPGA数字频率计的设计中英对照外文文献翻译毕业设计论文人工翻译原文

基于FPGA的等精度数字频率计的设计相关中英对照外文文献翻译毕业设计论文高质量人工翻译原文带出处

基于FPGA数字频率计的设计及应用.doc

基于FPGA数字频率计的设计与实现,有完整的仿真结果实验,板子介绍,功能介绍,功能实现等等。使用Verilog语言,对各项技术也有详细的介绍

基于FPGA数字频率计的设计

该频率计利用等精度的设计方法,克服了基于传统测频原理的频率计的测量精度随被测信号频率的下降而下降的缺点。等精度的测量方法不但具有较高的测量精度,而且在整个频率区域保持恒定的测试精度。该频率计利用FPGA来...

基于VHDL语言的数字频率计的设计方案

本文提出了一种基于VHDL语言的数字频率计的设计方案,该方案通过采用自顶向下的设计方法,用VHDL语言对状态机、计数器、十分频、同步整形电路等进行编程,用QuartusⅡ对状态机、计数器、同步整形电路、分频电路进行...

EDA/PLD中的基于FPGA的等精度频率计的设计与实现

摘 要:利用等精度测量原理,通过FPGA运用VHDL编程设计一个数字式频率计,精度范围在DC~100 MHz,给出实现代码和仿真波形。设计具有较高的实用性和可靠性。  关键词:FPGA;等精度;频率计;VHDL   现场可...

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

特邀编辑特刊:安全可信计算

10特刊客座编辑安全和可信任计算0OZGUR SINANOGLU,阿布扎比纽约大学,阿联酋 RAMESHKARRI,纽约大学,纽约0人们越来越关注支撑现代社会所有信息系统的硬件的可信任性和可靠性。对于包括金融、医疗、交通和能源在内的所有关键基础设施,可信任和可靠的半导体供应链、硬件组件和平台至关重要。传统上,保护所有关键基础设施的信息系统,特别是确保信息的真实性、完整性和机密性,是使用在被认为是可信任和可靠的硬件平台上运行的软件实现的安全协议。0然而,这一假设不再成立;越来越多的攻击是0有关硬件可信任根的报告正在https://isis.poly.edu/esc/2014/index.html上进行。自2008年以来,纽约大学一直组织年度嵌入式安全挑战赛(ESC)以展示基于硬件的攻击对信息系统的容易性和可行性。作为这一年度活动的一部分,ESC2014要求硬件安全和新兴技术�

ax1 = fig.add_subplot(221, projection='3d')如何更改画布的大小

### 回答1: 可以使用`fig.set_size_inches()`方法来更改画布大小。例如,如果想要将画布大小更改为宽8英寸,高6英寸,可以使用以下代码: ``` fig.set_size_inches(8, 6) ``` 请注意,此方法必须在绘图之前调用。完整代码示例: ``` import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() fig.set_size_inches(8, 6) ax1 = fig.add_subplot(221, project

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

特邀编辑导言:片上学习的硬件与算法

300主编介绍:芯片上学习的硬件和算法0YU CAO,亚利桑那州立大学XINLI,卡内基梅隆大学TAEMINKIM,英特尔SUYOG GUPTA,谷歌0近年来,机器学习和神经计算算法取得了重大进展,在各种任务中实现了接近甚至优于人类水平的准确率,如基于图像的搜索、多类别分类和场景分析。然而,大多数方法在很大程度上依赖于大型数据集的可用性和耗时的离线训练以生成准确的模型,这在许多处理大规模和流式数据的应用中是主要限制因素,如工业互联网、自动驾驶车辆和个性化医疗分析。此外,这些智能算法的计算复杂性仍然对最先进的计算平台构成挑战,特别是当所需的应用受到功耗低、吞吐量高、延迟小等要求的严格限制时。由于高容量、高维度和高速度数据,最近传感器技术的进步进一步加剧了这种情况。0在严格的条件下支持芯片上学习和分类的挑战0性�