super(ImageNet, self).__init__(root=os.path.join(root, 'ILSVRC2012_img_%s' %(split)), transform=None),这段话是什么意思啊
时间: 2024-04-28 08:26:58 浏览: 37
这段代码是调用 ImageFolder 类的初始化函数,其中 `super(ImageNet, self)` 表示调用 ImageNet 类的父类(即 ImageFolder 类),`__init__` 表示调用父类的初始化函数。该初始化函数会读取指定路径下的所有图片,并将其按照文件夹的名称作为标签(类别)进行标记。具体来说,该函数的参数含义如下:
- `root`:ImageNet 数据集的根目录,该目录下应该有一个名为 `ILSVRC2012_img_train` 或 `ILSVRC2012_img_val` 的目录,分别代表训练集和验证集。`os.path.join(root, 'ILSVRC2012_img_%s' %(split))` 表示将 `root` 和 `ILSVRC2012_img_train` 或 `ILSVRC2012_img_val` 拼接成完整的路径。
- `transform`:数据预处理操作,例如图像缩放、裁剪、标准化等。该参数可以传入 torchvision.transforms 中的变换操作,或者自定义的变换操作。在该代码中,该参数被设置为 `None`,表示不进行任何预处理操作。
总之,这段代码的作用是读取指定路径下的所有图片,并将其按照文件夹的名称作为标签进行标记,同时可以进行数据预处理操作。
相关问题
class ImageNet(datasets.ImageFolder): def __init__(self, root=MyPath.db_root_dir('imagenet'), split='train', transform=None): super(ImageNet, self).__init__(root=os.path.join(root, 'ILSVRC2012_img_%s' %(split)), transform=None),这段话是什么意思啊
这段代码定义了一个名为 ImageNet 的数据集类,它是 PyTorch 内置的 ImageFolder 类的子类,主要用于读取 ImageNet 数据集。其中各个参数的含义如下:
- `root`:ImageNet 数据集的根目录,默认为 `'/path/to/imagenet'`。该目录下应该有一个名为 `ILSVRC2012_img_train` 或 `ILSVRC2012_img_val` 的目录,分别代表训练集和验证集。
- `split`:数据集的划分方式,可选值为 `'train'` 或 `'val'`,默认为 `'train'`。
- `transform`:数据预处理操作,例如图像缩放、裁剪、标准化等。该参数可以传入 torchvision.transforms 中的变换操作,或者自定义的变换操作。如果为 `None`,表示不进行任何预处理操作。
在 ImageNet 类的初始化函数中,首先调用了 ImageFolder 类的初始化函数 `super(ImageNet, self).__init__(...)`,以便读取 ImageNet 数据集中的所有图片和其对应的标签。然后将读取到的图片路径和标签存储在类的 `imgs` 属性中。注意,在初始化 ImageFolder 类时,传入的 `transform` 参数为 `None`,因此实际上并没有进行任何数据预处理操作。如果需要进行数据预处理操作,可以在调用 ImageNet 类时传入相应的 `transform` 参数。
以下代码class ShowDataset(Dataset): def __init__(self,name): super().__init__() self.root_dir = settings.real_dir # real_dir = './datasets/real' self.mat_files_rain= natsorted(os.listdir(self.root_dir)) # 对真实雨天图像进行排序 self.file_num = len(self.mat_files_rain) # 返回样本数 def __len__(self): return self.file_num def __getitem__(self, index): file_name = self.mat_files_rain[index] img_file_dir = os.path.join(self.root_dir, file_name) img_file = cv2.imread(img_file_dir).astype(np.float32) / 255 O = np.transpose(img_file, (2, 0, 1)) sample = {'O': O, 'file_name': file_name} return sample在使用dataloaders = {} sample = ShowDataset() dataloaders['train'] = \ DataLoader(sample, batch_size=8, shuffle=True, num_workers=0, drop_last=True)调用时报错TypeError: module() takes at most 2 arguments (3 given)的原因
根据你提供的代码,我看到一个问题:你创建`ShowDataset`对象时传递了一个参数`name`,但是`ShowDataset`的构造函数没有定义这个参数。因此,当你尝试调用`ShowDataset()`时,会出现`TypeError: module() takes at most 2 arguments (3 given)`的错误,因为Python认为你传递了不必要的参数。
解决这个问题的方法是删除`ShowDataset`构造函数的`name`参数,因为它在你的代码中没有用到。修改后的`ShowDataset`构造函数应该是这样的:
```
class ShowDataset(Dataset):
def __init__(self):
super().__init__()
self.root_dir = settings.real_dir
self.mat_files_rain= natsorted(os.listdir(self.root_dir))
self.file_num = len(self.mat_files_rain)
def __len__(self):
return self.file_num
def __getitem__(self, index):
file_name = self.mat_files_rain[index]
img_file_dir = os.path.join(self.root_dir, file_name)
img_file = cv2.imread(img_file_dir).astype(np.float32) / 255
O = np.transpose(img_file, (2, 0, 1))
sample = {'O': O, 'file_name': file_name}
return sample
```
然后,你可以使用以下代码来创建`DataLoader`对象:
```
sample = ShowDataset()
dataloaders['train'] = DataLoader(sample, batch_size=8, shuffle=True, num_workers=0, drop_last=True)
```
这应该可以解决你遇到的问题。
阅读全文