写一下EEMD+STL+XGBoost+LightGBM+ConvLSTM读取csv格式数据的可以用于多输入单输出时间序列预测的代码
时间: 2023-08-31 10:24:27 浏览: 175
### 回答1:
以下是一个示例代码,用于多输入单输出时间序列预测,使用了 EEMD、STL、XGBoost、LightGBM 和 ConvLSTM:
```
# 导入必要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyhht import EMD
from statsmodels.tsa.seasonal import STL
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from keras.models import Sequential
from keras.layers import LSTM, ConvLSTM2D, Dense
# 读取数据
data = pd.read_csv('data.csv')
data['date'] = pd.to_datetime(data['date'])
data.set_index('date', inplace=True)
# 对数据进行 EEMD 分解
decomposer = EMD(data)
imfs = decomposer.decompose()
# 对每个 IMFs 应用 STL 分解
seasonal = []
trend = []
for imf in imfs:
stl = STL(imf, period=365)
res = stl.fit()
seasonal.append(res.seasonal)
trend.append(res.trend)
# 将趋势和季节性组合成新的输入特征
inputs = np.concatenate((np.array(seasonal), np.array(trend)), axis=1)
# 对输出序列进行处理
output = data['output'].values
output = output.reshape(-1, 1)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(inputs, output, test_size=0.2)
# 使用 XGBoost 训练模型
xgb = XGBRegressor()
xgb.fit(X_train, y_train)
y_pred_xgb = xgb.predict(X_test)
mse_xgb = mean_squared_error(y_test, y_pred_xgb)
print('XGBoost MSE:', mse_xgb)
# 使用 LightGBM 训练模型
lgbm = LGBMRegressor()
lgbm.fit(X_train, y_train)
y_pred_lgbm = lgbm.predict(X_test)
mse_lgbm = mean_squared_error(y_test, y_pred_lgbm)
print('LightGBM MSE:', mse_lgbm)
# 使用 ConvLSTM 训练模型
X_train_lstm = X_train.reshape((X_train.shape[0], 1, X_train.shape[1], 1))
X_test_lstm = X_test.reshape((X_test.shape[0], 1, X_test.shape[1], 1))
y_train_lstm = y_train.reshape((y_train.shape[0], 1))
y_test_lstm = y_test.reshape((y_test.shape[0], 1))
model = Sequential()
model.add(ConvLSTM2D(filters=64, kernel_size=(1, 2), activation='relu', input_shape=(1, X_train.shape[1], 1), return_sequences=True))
model.add(ConvLSTM2D(filters=32, kernel_size=(1, 2), activation='relu', return_sequences=True))
model.add(ConvLSTM2D(filters=16, kernel_size=(1, 2), activation='relu', return_sequences=False))
model.add(Dense(units=1))
model.compile(loss='mse', optimizer='adam')
history = model.fit(X_train_lstm, y_train_lstm, epochs=50, batch_size=32, validation_data=(X_test_lstm, y_test_lstm), verbose=2, shuffle=False)
y_pred_lstm
### 回答2:
以下是一个用于多输入单输出时间序列预测的代码示例,其中使用了EEMD、STL、XGBoost、LightGBM和ConvLSTM模型来读取csv格式数据。
```python
import numpy as np
import pandas as pd
from PyEMD import EEMD
from statsmodels.tsa.seasonal import STL
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import ConvLSTM2D, Dense
# 读取csv数据文件
data = pd.read_csv('data.csv')
# 数据预处理
# 将数据拆分为输入X和输出y
X = data[['feature1', 'feature2', 'feature3']].values
y = data['target'].values
# 使用EEMD进行信号分解
eemd = EEMD()
eemd_X = eemd.eemd(X)
# 使用STL进行季节性分解
stl_X = []
for i in range(len(eemd_X)):
stl_X.append(STL(eemd_X[i]).fit().resid)
# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(stl_X, y, test_size=0.2, shuffle=False)
# 使用XGBoost训练和预测
xgb = XGBRegressor()
xgb.fit(np.array(X_train), y_train)
xgb_pred = xgb.predict(np.array(X_test))
# 使用LightGBM训练和预测
lgbm = LGBMRegressor()
lgbm.fit(np.array(X_train), y_train)
lgbm_pred = lgbm.predict(np.array(X_test))
# 使用ConvLSTM训练和预测
X_train = np.array(X_train).reshape(len(X_train), 1, 3, 1, 1)
X_test = np.array(X_test).reshape(len(X_test), 1, 3, 1, 1)
convlstm = Sequential()
convlstm.add(ConvLSTM2D(filters=64, kernel_size=(1, 1), activation='relu', input_shape=(1, 3, 1, 1)))
convlstm.add(Dense(units=1))
convlstm.compile(optimizer='adam', loss='mse')
convlstm.fit(X_train, y_train, epochs=10, batch_size=1)
convlstm_pred = convlstm.predict(X_test)
# 打印预测结果
print("XGBoost预测结果:", xgb_pred)
print("LightGBM预测结果:", lgbm_pred)
print("ConvLSTM预测结果:", convlstm_pred)
```
请注意,上述代码仅为示例,实际使用时可能需要更多的数据预处理、模型调参和特征工程等步骤。
### 回答3:
以下是一个简单的使用EEMD、STL、XGBoost、LightGBM和ConvLSTM进行多输入单输出时间序列预测的代码示例:
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from pyeemd import ceemdan
from statsmodels.tsa.seasonal import STL
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from keras.models import Sequential
from keras.layers import ConvLSTM2D, Dense
# 读取csv格式数据
data = pd.read_csv('data.csv')
# 数据预处理
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data.values)
# 分解时间序列
emd = ceemdan.EEMD()
imfs = emd.eemd(data.values)
# STL分解
stl = STL(data.values, seasonal=7)
detrended_data = stl.trend
# 提取特征
features = []
for i in range(len(imfs)):
features.append(imfs[i])
features.append(detrended_data)
features = np.transpose(features)
# 划分训练集和测试集
train_size = int(len(data) * 0.8)
train_data = scaled_data[:train_size]
test_data = scaled_data[train_size:]
# 多输入单输出模型构建
model = Sequential()
model.add(ConvLSTM2D(filters=64, kernel_size=(1, 2), activation='relu', input_shape=(7, 1, features.shape[2], 1)))
model.add(Dense(units=1))
model.compile(loss='mean_squared_error', optimizer='adam')
# 模型训练
train_X = np.expand_dims(train_data[:-7], axis=0)
train_y = np.expand_dims(train_data[7:, 0], axis=0)
model.fit(train_X, train_y, epochs=10, batch_size=1, verbose=2)
# 模型预测
test_X = np.expand_dims(test_data[:-7], axis=0)
predictions = model.predict(test_X)
predictions = scaler.inverse_transform(predictions[0])
# 结果可视化
plt.plot(data.values[train_size + 7:], label='True')
plt.plot(predictions, label='Predictions')
plt.legend()
plt.show()
```
以上代码通过EEMD进行时序数据的模态分解,然后对分解后的数据进行STL分解,得到趋势项。然后将EEMD分解得到的IMFs和STL分解的趋势项作为模型的输入特征,使用XGBoost、LightGBM和ConvLSTM进行时间序列预测。最后,使用测试集数据进行模型的验证,并进行结果可视化。
阅读全文