transforms.normalize
时间: 2024-05-14 09:18:44 浏览: 115
transforms.zip
`transforms.normalize()` is a method in the PyTorch library's `transforms` module that is used to normalize a tensor image with mean and standard deviation.
It takes two arguments: mean and standard deviation. These values are usually pre-calculated for the dataset that the tensor image belongs to. The method then normalizes each channel of the tensor image by subtracting the mean and dividing by the standard deviation.
Here is an example of how to use `transforms.normalize()`:
```
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
```
In this example, we are creating a `transform` object that first converts a PIL image to a tensor using `transforms.ToTensor()`, and then normalizes the tensor image using `transforms.Normalize()` with the mean and standard deviation values specified. This transform can then be applied to a dataset using a data loader to prepare the data for a machine learning model.
阅读全文