手势识别音乐播放器python
时间: 2023-12-25 07:30:09 浏览: 136
python 手势识别
以下是一个使用手势识别控制音乐播放器的Python示例:
```python
import cv2
import numpy as np
import pyautogui
import math
# 定义肤色范围
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
# 初始化摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取摄像头帧
ret, frame = cap.read()
# 镜像翻转帧
frame = cv2.flip(frame, 1)
# 转换颜色空间为HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 提取肤色区域
mask = cv2.inRange(hsv, lower_skin, upper_skin)
# 进行腐蚀和膨胀操作,去除噪声
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# 查找轮廓
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:
# 找到最大的轮廓
max_contour = max(contours, key=cv2.contourArea)
# 计算最大轮廓的凸包
hull = cv2.convexHull(max_contour)
# 计算凸包的缺陷
defects = cv2.convexityDefects(max_contour, cv2.convexHull(max_contour, returnPoints=False))
if defects is not None:
# 绘制轮廓和凸包
cv2.drawContours(frame, [max_contour], 0, (0, 255, 0), 2)
cv2.drawContours(frame, [hull], 0, (0, 0, 255), 3)
# 计算手指数量
finger_count = 0
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(max_contour[s][0])
end = tuple(max_contour[e][0])
far = tuple(max_contour[f][0])
# 计算手指之间的距离
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
angle = math.acos((b**2 + c**2 - a**2) / (2*b*c)) * 180 / math.pi
# 如果角度小于90度,认为是手指
if angle < 90:
finger_count += 1
# 根据手指数量执行相应操作
if finger_count == 0:
# 播放五指,音量放大
pyautogui.press('volumeup')
elif finger_count == 1:
# 握拳,音量放小
pyautogui.press('volumedown')
elif finger_count == 2:
# 中指,暂停
pyautogui.press('playpause')
elif finger_count == 3:
# 手指6,继续播放
pyautogui.press('playpause')
elif finger_count == 4:
# 手指向上,上一首
pyautogui.press('prevtrack')
elif finger_count == 5:
# 手指向下,下一首
pyautogui.press('nexttrack')
elif finger_count == 10:
# 双手和十,退出
break
# 显示帧
cv2.imshow('Gesture Recognition', frame)
# 按下'q'键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()
```
请注意,此示例仅提供了一个基本的手势识别音乐播放器的框架,具体的手势和操作可以根据实际需求进行修改和扩展。
阅读全文