解释以下代码import org.apache.spark.{SparkConf, SparkContext} object ks { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val inputRDD = sc.textFile("D:\\shan.txt") val wordsRDD = inputRDD.flatMap(line => line.split(" ")) val wordCountRDD = wordsRDD.map(word => (word, 1)).reduceByKey(_ + _) wordCountRDD.foreach(println) sc.stop() } }
时间: 2024-03-26 19:42:05 浏览: 113
这段代码使用 Apache Spark 框架执行单词计数任务。下面是代码的解释:
1. 导入所需的 Spark 库。
```
import org.apache.spark.{SparkConf, SparkContext}
```
2. 创建一个名为 "ks" 的对象。
```
object ks {
```
3. 定义一个名为 "main" 的方法,它接受一个字符串数组作为参数并返回一个 Unit 类型。
```
def main(args: Array[String]): Unit = {
```
4. 创建一个 SparkConf 对象并设置应用程序的名称和主机。
```
val conf = new SparkConf().setAppName("Word Count").setMaster("local")
```
5. 创建一个 SparkContext 对象。
```
val sc = new SparkContext(conf)
```
6. 使用 SparkContext 从文件中读取输入文本,并创建一个名为 "inputRDD" 的 RDD。
```
val inputRDD = sc.textFile("D:\\shan.txt")
```
7. 使用 flatMap() 方法将每行文本拆分成单词,并创建一个名为 "wordsRDD" 的 RDD。
```
val wordsRDD = inputRDD.flatMap(line => line.split(" "))
```
8. 使用 map() 和 reduceByKey() 方法计算每个单词出现的次数,并创建一个名为 "wordCountRDD" 的 RDD。
```
val wordCountRDD = wordsRDD.map(word => (word, 1)).reduceByKey(_ + _)
```
9. 使用 foreach() 方法打印每个单词和它的计数。
```
wordCountRDD.foreach(println)
```
10. 关闭 SparkContext 对象。
```
sc.stop()
```
整个代码的作用是读取指定路径下的文本文件,统计每个单词出现的次数并输出。
阅读全文