Java用mapreduce输出数据保存到本地先写main代码

时间: 2023-08-31 14:19:23 浏览: 105
RAR

0324大数据代码与数据_JAVA大数据_文本分析_运用MapReduce做数据分析_

### 回答1: 首先,您需要配置Hadoop环境并导入相关的Java包,然后可以使用MapReduce API来编写Java代码。 具体来说,您需要实现Mapper和Reducer接口,分别处理输入数据并输出中间结果。然后,您需要实现Job类来将Mapper和Reducer组装在一起,并设置作业的输入输出路径以及相关的参数。最后,您需要在main方法中调用Job的waitForCompletion方法来提交作业并等待它完成。 示例代码如下: ```java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class WordCountMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { String[] words = value.toString().split(" "); for (String w : words) { word.set(w); context.write(word, one); } } } public static class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = ### 回答2: Java中使用MapReduce输出数据并保存到本地需要编写主要的代码。下面是一个示例的主要代码,该代码使用MapReduce输出数据并将结果保存到本地。 ``` import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class MapReduceToSaveDataLocally { public static class MapClass extends Mapper<Object, Text, Text, NullWritable> { @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { // 处理输入的数据并输出到Reducer // 这里是一个示例,你可以根据自己的需求进行修改 context.write(value, NullWritable.get()); } } public static class ReduceClass extends Reducer<Text, NullWritable, Text, NullWritable> { @Override protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { // 处理Mapper输出的数据并保存到本地 // 这里是一个示例,你可以根据自己的需求进行修改 context.write(key, NullWritable.get()); } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "MapReduce to Save Data Locally"); job.setJarByClass(MapReduceToSaveDataLocally.class); job.setMapperClass(MapClass.class); job.setReducerClass(ReduceClass.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); // 设置输入和输出路径 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 删除已存在的输出目录 FileSystem fs = FileSystem.get(conf); fs.delete(new Path(args[1]), true); // 提交MapReduce作业并等待完成 int returnValue = job.waitForCompletion(true) ? 0 : 1; System.exit(returnValue); } } ``` 以上是一个示例的Java代码,用于使用MapReduce将数据保存到本地。你可以根据自己的需求进行适当的修改,例如修改Mapper和Reducer类的逻辑以及设置实际的输入和输出路径。请注意,你需要正确配置Hadoop相关的环境并提供正确的输入和输出路径参数才能成功运行该代码。 ### 回答3: 在Java中使用MapReduce输出数据并保存到本地,首先需要编写Main代码。以下是一个简单的示例代码: ``` import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class MapReduceMain { public static class Map extends Mapper<LongWritable, Text, Text, Text> { public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // Mapper的逻辑 // 将输入数据进行处理,并将结果写入Context中,作为Reducer的输入 } } public static class Reduce extends Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { // Reducer的逻辑 // 对Mapper的输出进行聚合处理,并将最终结果写入Context中,作为输出 } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "MapReduce Example"); job.setJarByClass(MapReduceMain.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path("input_path")); // 设置输入路径 FileOutputFormat.setOutputPath(job, new Path("output_path")); // 设置输出路径 FileSystem fs = FileSystem.get(conf); if (fs.exists(new Path("output_path"))) { fs.delete(new Path("output_path"), true); // 如果输出路径已存在,则删除之前的结果 } System.exit(job.waitForCompletion(true) ? 0 : 1); } } ``` 在上述示例代码中,首先定义了两个内部类`Map`和`Reduce`,分别继承自`Mapper`和`Reducer`。在`Map`类的`map`方法中,可以编写自定义的Mapper逻辑,将输入数据进行处理并将结果写入Context中。在`Reduce`类的`reduce`方法中,可以编写自定义的Reducer逻辑,对Mapper的输出进行聚合处理,并将最终结果写入Context中。 在`main`方法中,首先创建一个`Configuration`对象,并通过`Job`类创建一个MapReduce任务对象。设置任务的各项属性,包括输入路径、输出路径、Mapper和Reducer的类、输出键值对的类型等。在设置完属性后,通过`FileSystem`对象检查输出路径是否已经存在,如果存在则删除之前的结果。最后调用`job.waitForCompletion(true)`方法提交任务,并通过`System.exit`方法等待任务完成。 请注意,上述示例代码中未包含Mapper和Reducer的具体实现逻辑,需要根据实际需求进行编写。同时,输入路径和输出路径需要根据具体的文件系统设置正确的路径。
阅读全文

相关推荐

最新推荐

recommend-type

java大数据作业_5Mapreduce、数据挖掘

【Java大数据作业_5Mapreduce、数据挖掘】的课后作业涵盖了多个MapReduce和大数据处理的关键知识点,包括日志分析、Job执行模式、HBase的相关类、容量调度配置、MapReduce流程以及二次排序算法。下面将对这些内容...
recommend-type

爬虫代码+MapReduce代码+可视化展示代码.docx

MapReduce代码的主要功能是将爬虫爬取的数据进行处理、统计和分析,并将结果保存到HDFS中。 MapReduce代码实现 MapReduce代码的实现主要分为两个部分:Mapper和Reducer。 1. Mapper:Mapper是MapReduce代码的核心...
recommend-type

基于MapReduce的Apriori算法代码

4. 并行计算:该代码使用MapReduce框架来实现Apriori算法的并行计算,能够处理大规模数据集的计算任务。 知识点: 1. 关联规则挖掘:关联规则挖掘是一种数据挖掘技术,用于发现事务数据库中频繁出现的项集。 2. ...
recommend-type

PHP语言基础知识详解及常见功能应用.docx

本文详细介绍了PHP的基本语法、变量类型、运算符号以及文件上传和发邮件功能的实现方法,适合初学者了解和掌握PHP的基础知识。
recommend-type

公司金融课程期末考试题目

公司金融整理的word文档
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。