从doc文件中抽取含有多个关键词的句子,将抽取的句子保存到txt文件,关键词从Excel表格中匹配,直接写python完整代码,pandas库

时间: 2023-02-06 20:39:39 浏览: 213
首先,我们需要使用python-docx库来读取doc文件。我们可以使用pandas库读取Excel表格中的关键词。接下来,我们可以遍历doc文件中的每一个段落,并检查这些段落中是否包含我们在Excel表格中列出的任意一个关键词。如果找到了,我们就将这个段落保存到txt文件中。 以下是一个可以实现这个功能的代码示例: ```python import pandas as pd import python-docx # 读取Excel表格中的关键词 keywords = pd.read_excel('keywords.xlsx')['Keywords'].tolist() # 打开doc文件 doc = docx.Document('document.docx') # 打开txt文件,准备写入 with open('extracted_sentences.txt', 'w') as f: # 遍历每一个段落 for paragraph in doc.paragraphs: # 检查这个段落中是否包含任意一个关键词 for keyword in keywords: if keyword in paragraph.text: # 如果找到了,就将这个段落写入txt文件 f.write(paragraph.text + '\n') break ``` 希望这个示例能帮助你。
相关问题

从doc文件中抽取含有多个关键词的句子,将抽取的句子保存到txt文件,关键词从Excel表格中匹配,直接写python完整代码

### 回答1: 首先,我们需要安装两个库:python-docx 和 xlrd。 python-docx 库可以帮助我们读取 docx 文件中的文本,xlrd 库可以帮助我们读取 Excel 表格中的数据。你可以使用如下命令安装这两个库: ``` pip install python-docx pip install xlrd ``` 接下来,我们可以使用如下代码来抽取 docx 文件中含有多个关键词的句子,并将抽取的句子保存到 txt 文件中: ```python import docx import xlrd # 打开 Excel 文件,读取关键词 workbook = xlrd.open_workbook('keywords.xlsx') sheet = workbook.sheet_by_index(0) keywords = sheet.col_values(0) # 打开 docx 文件,读取文本 document = docx.Document('document.docx') text = [] for paragraph in document.paragraphs: text.append(paragraph.text) # 抽取含有关键词的句子 extracted_sentences = [] for sentence in text: for keyword in keywords: if keyword in sentence: extracted_sentences.append(sentence) # 将抽取的句子保存到 txt 文件中 with open('extracted_sentences.txt', 'w') as f: for sentence in extracted_sentences: f.write(sentence + '\n') ``` 希望这段代码能够帮到你。如果你有任何疑问,请随时追问。 ### 回答2: import docx import xlrd # 打开doc文件 doc = docx.Document('example.docx') # 打开Excel表格 wb = xlrd.open_workbook('example.xlsx') sheet = wb.sheet_by_index(0) # 获取所有关键词 keywords = [sheet.cell_value(i, 0) for i in range(sheet.nrows)] # 保存匹配的句子到txt文件 with open('result.txt', 'w') as f: # 遍历doc文件的段落 for para in doc.paragraphs: # 遍历关键词 for keyword in keywords: # 如果关键词在段落中出现 if keyword in para.text: # 保存包含关键词的句子到txt文件 f.write(para.text + '\n') break print("句子提取完成并保存到result.txt文件中") ### 回答3: 以下是用Python编写的完整代码,用于从doc文件中提取包含多个关键词的句子,并将提取的句子保存到txt文件中。关键词从Excel表格中匹配。 ```python import docx2txt import pandas as pd # 从doc文件中提取文本 text = docx2txt.process("input.docx") # 读取Excel表格中的关键词 keywords_data = pd.read_excel("keywords.xlsx") keywords = list(keywords_data["Keyword"]) # 创建保存匹配句子的列表 matched_sentences = [] # 根据关键词匹配句子 sentences = text.split(".") for sentence in sentences: if all(keyword in sentence for keyword in keywords): matched_sentences.append(sentence.strip()) # 将匹配的句子保存到txt文件 with open("output.txt", "w", encoding="utf-8") as file: for sentence in matched_sentences: file.write(sentence + "\n") print("句子提取完成并保存到output.txt文件。") ``` 请确保你的环境中安装了以下库: - docx2txt:用于从doc文件中提取文本内容。 - pandas:用于读取和处理Excel表格数据。 代码的思路是先使用`docx2txt`库从doc文件中提取文本内容,然后使用`pandas`库读取Excel表格中的关键词。接着,将文本内容按句号拆分成句子,并逐个句子检查是否包含所有关键词。如果包含所有关键词,则将该句子添加到匹配的句子列表中。最后,将匹配的句子逐行保存到txt文件中。 请将代码中的`input.docx`替换为你想要提取句子的具体doc文件,将`keywords.xlsx`替换为包含关键词的Excel表格文件,并将`output.txt`替换为保存提取的句子的txt文件路径。

在SQL Server中如何使用DTS实现复杂数据集的高效迁移和转换?请结合实际案例提供详细步骤。

在进行数据库迁移和数据转换时,理解并熟练使用SQL Server的数据转换服务(DTS)显得尤为重要。为了帮助你掌握这一过程,推荐参阅《SQL Server DTS:数据转换服务实战教程》。这本书详细介绍了在Microsoft SQL Server中利用DTS进行数据处理的各个方面,包括数据的抽取、转换和加载(ETL)。 参考资源链接:[SQL Server DTS:数据转换服务实战教程](https://wenku.csdn.net/doc/5sbsakfnkb?spm=1055.2569.3001.10343) 首先,数据迁移前的准备工作至关重要,这包括了解源数据集和目标数据集的结构、确定迁移策略以及选择合适的DTS工具。使用DTS进行数据迁移和转换时,可以通过SQL Server的Business Intelligence Development Studio(BIDS)创建一个新的Integration Services(SSIS)项目。在这个项目中,可以新建包,然后通过数据流任务(Data Flow Task)来实现数据的抽取、转换和加载。 在数据抽取阶段,可以根据需要选择不同的数据源,如文本文件、Excel表格、数据库表等。对于大容量数据的迁移,建议使用批处理(Bulk Insert)等高效方法,以减少I/O操作次数,提高数据迁移的效率。 数据转换是DTS的核心环节,可以使用转换(Transformations)组件来实现,例如数据清洗、转换数据类型、数据拆分与合并、查找和替换等。对于需要进行复杂逻辑处理的场景,可以使用脚本转换器(Script Transformation)来编写自定义的转换逻辑。 在数据加载阶段,需要配置合适的目的(Destination),比如可以是新建的表,也可以是已存在的表。配置时要确保数据类型匹配,并且根据需要选择合适的加载方式,如完全替换、追加或增量加载等。 整个过程中,你可能需要多次预览和测试来确保数据的准确性和完整性。最后,通过配置适当的执行参数来运行数据包,监控整个迁移过程中的日志和状态,确保迁移任务的顺利执行。 通过学习《SQL Server DTS:数据转换服务实战教程》,你可以获得从基础到高级的全面指导,不仅学会如何进行数据迁移和转换,还能深入理解DTS在数据管理中的核心作用,并掌握处理各种数据源和复杂任务的技巧。在你完成本教程学习后,可以进一步探索更多高级主题,如使用DTS进行跨平台数据迁移,以及如何优化性能以处理更大规模的数据集。 参考资源链接:[SQL Server DTS:数据转换服务实战教程](https://wenku.csdn.net/doc/5sbsakfnkb?spm=1055.2569.3001.10343)
阅读全文

相关推荐

最新推荐

recommend-type

直接在线预览Word、Excel、TXT文件之ASP.NET

在ASP.NET中实现直接在线预览Word、Excel、TXT文件是一项常见的需求,特别是在需要提供用户友好界面的企业级应用中。这种功能允许用户无需下载文件就能查看其内容,提高了工作效率并节省了存储空间。以下是如何使用...
recommend-type

spring 异步编程样例

spring 异步编程样例
recommend-type

带有 python 3 和 opencv 4.1 的 Docker 映像.zip

带有 python 3.7 和 opencv 4.1.0 的 Docker 映像用法docker run -it jjanzic/docker-python3-opencv python>>> import cv2带有标签的图像包含使用contrib 模块:contrib构建的 docker 镜像可用的docker标签列表opencv-4.1.0(latest分支)contrib-opencv-4.1.0(opencv_contrib分支)opencv-4.0.1contrib-opencv-4.0.1opencv-4.0.0contrib-opencv-4.0.0opencv-3.4.2contrib-opencv-3.4.2opencv-3.4.1contrib-opencv-3.4.1opencv-3.4.0contrib-opencv-3.4.0opencv-3.3.0contrib-opencv-3.3.0opencv-3.2.0contrib-opencv-3.2.0
recommend-type

原生js鼠标滑过文字淡入淡出效果.zip

原生js鼠标滑过文字淡入淡出效果.zip
recommend-type

1-中国各省、市、区、县距离港口和海岸线的距离计算代码+计算结果-社科数据.zip

中国各城市、区、县距离港口和海岸线的距离数据集提供了全国各城市及区、县的坐标信息,以及各个港口和海岸线的坐标信息。通过R语言计算,得出了各城市、区县与港口和海岸线之间的距离。该数据集包含了各港口的经纬度、各城市与港口之间的距离、各区县与港口之间的距离、中国各城市质心与港口的最近距离、中国各城市质心与海岸线的距离、中国各区县质心与港口的最近距离以及中国各区县质心与海岸线的距离等指标。此外,还涉及中国各省距离海岸线的距离数据。港口等级划分参考了《全国沿海港口布局规划》,包括上海港、大连港等45个港口。数据集覆盖了全国31个省及直辖市,是研究地理、经济和规划等领域的宝贵资源。
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。