继续打印上述rsa-crt没打印完整的代码
时间: 2023-02-13 22:50:55 浏览: 99
针对RSA-CRT数字签名的光故障攻击研究
好的,下面是完整的 RSA-CRT 代码:
```python
# Compute n = p * q
n = p * q
# Compute phi(n) = (p - 1) * (q - 1)
phi_n = (p - 1) * (q - 1)
# Choose an integer e such that e and phi(n) are coprime
# Use a relatively small value for e to speed up the encryption process
e = 65537
# Compute d such that d * e = 1 (mod phi(n))
# d is the modular inverse of e modulo phi(n)
# We can use the extended Euclidean algorithm to compute d
(d, _) = extended_euclidean_algorithm(e, phi_n)
# Make sure d is positive
d = d % phi_n
if d < 0:
d = d + phi_n
# Public key is (e, n)
public_key = (e, n)
# Private key is (d, p, q)
private_key = (d, p, q)
def rsa_crt_encrypt(m, public_key):
e, n = public_key
p, q = factorize(n)
dp = d % (p - 1)
dq = d % (q - 1)
qinv = modular_inverse(q, p)
# Compute c = m^e (mod n) using the Chinese Remainder Theorem
c1 = pow(m, dp, p)
c2 = pow(m, dq, q)
h = (qinv * (c1 - c2)) % p
c = c2 + h * q
return c
def rsa_crt_decrypt(c, private_key):
d, p, q = private_key
dp = d % (p - 1)
dq = d % (q - 1)
qinv = modular_inverse(q, p)
# Compute m = c^d (mod n) using the Chinese Remainder Theorem
m1 = pow(c, dp, p)
m2 = pow(c, dq, q)
h = (qinv * (m1 - m2)) % p
m = m2 + h * q
return m
def rsa_crt_sign(m, private_key):
d, p, q = private_key
dp = d % (p - 1)
dq = d % (q - 1)
qinv = modular_inverse(q, p)
# Compute s = m^d (mod n) using the Chinese Remainder Theorem
s1 = pow(m, dp, p)
s2 = pow(m, dq, q)
h = (qinv * (s1 - s2)) % p
s = s2 + h * q
return s
def rsa_crt_verify(s, m, public_key):
e, n = public_key
p, q = factorize(
阅读全文