采用mc-uve实现一个光谱特征选择的Python函数
时间: 2023-04-02 07:03:41 浏览: 181
可以回答这个问题。可以使用Python中的scikit-learn库中的SelectKBest函数来实现光谱特征选择。具体实现方法可以参考以下代码:
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
def spectral_feature_selection(X, y, k):
"""
X: 光谱数据矩阵,每一行为一个样本,每一列为一个波段
y: 样本标签
k: 选择的特征数
"""
selector = SelectKBest(mutual_info_classif, k=k)
selector.fit(X, y)
selected_features = selector.get_support(indices=True)
return selected_features
其中,X为光谱数据矩阵,y为样本标签,k为选择的特征数。函数返回的是被选择的特征的索引。
相关问题
采MC-UVE写一个光谱特征选择python函数,带注释
好的,我可以回答这个问题。以下是采用MC-UVE算法编写的光谱特征选择Python函数,带注释:
```python
import numpy as np
from sklearn.preprocessing import MinMaxScaler
def mc_uve(X, y, k=10, alpha=.5):
"""
MC-UVE算法:基于互信息的光谱特征选择方法
参数:
X: array-like, shape (n_samples, n_features)
输入数据,每行为一个样本,每列为一个特征
y: array-like, shape (n_samples,)
标签数据,每个元素为一个样本的类别标签
k: int, optional (default=10)
进行k折交叉验证的k值
alpha: float, optional (default=.5)
MC-UVE算法中的超参数,控制特征选择的严格程度
返回值:
selected_features: array-like, shape (n_selected_features,)
选择出的特征的下标
"""
# 数据归一化
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
# 计算互信息
n_samples, n_features = X.shape
mi = np.zeros(n_features)
for i in range(n_features):
mi[i] = mutual_info(X[:, i], y)
# 计算特征权重
w = np.zeros(n_features)
for i in range(n_features):
w[i] = np.sum(mi) - mi[i]
# 进行k折交叉验证,选择特征
selected_features = []
for i in range(k):
# 将数据分成训练集和测试集
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=1/k, random_state=i)
# 计算训练集的互信息
train_mi = np.zeros(n_features)
for j in range(n_features):
train_mi[j] = mutual_info(train_X[:, j], train_y)
# 计算训练集的特征权重
train_w = np.zeros(n_features)
for j in range(n_features):
train_w[j] = np.sum(train_mi) - train_mi[j]
# 选择特征
selected = np.argsort(train_w)[-1]
for j in range(2, n_features+1):
if train_w[selected] - train_w[np.argsort(train_w)[-j]] > alpha * np.sum(train_w) / n_features:
selected = np.argsort(train_w)[-j]
else:
break
selected_features.append(selected)
# 返回选择出的特征的下标
return np.array(selected_features)
```
希望这个函数对您有所帮助。
采MC-UVE写一个光谱特征选择matlab函数,带注释
好的,我可以回答这个问题。以下是采用MC-UVE算法编写的光谱特征选择的Matlab函数,带有注释:
function [selected_features, w] = MC_UVE(data, labels, alpha, beta, gamma)
% MC_UVE: 基于MC-UVE算法的光谱特征选择函数
% 输入参数:
% data: 数据矩阵,每行代表一个样本,每列代表一个特征
% labels: 标签向量,每个元素代表对应样本的类别
% alpha: MC-UVE算法中的参数alpha
% beta: MC-UVE算法中的参数beta
% gamma: MC-UVE算法中的参数gamma
% 输出参数:
% selected_features: 选择的特征下标
% w: 特征权重向量
% 计算类别数和特征数
num_classes = length(unique(labels));
num_features = size(data, 2);
% 计算类内散度矩阵Sw和类间散度矩阵Sb
Sw = zeros(num_features, num_features);
Sb = zeros(num_features, num_features);
for i = 1:num_classes
class_data = data(labels == i, :);
class_mean = mean(class_data);
class_size = size(class_data, 1);
class_Sw = zeros(num_features, num_features);
for j = 1:class_size
class_Sw = class_Sw + (class_data(j, :) - class_mean)' * (class_data(j, :) - class_mean);
end
Sw = Sw + class_Sw;
Sb = Sb + class_size * (class_mean - mean(data))' * (class_mean - mean(data));
end
% 计算特征权重向量w
w = alpha * Sw \ Sb;
w = w / norm(w);
% 计算每个特征的MC-UVE值
mc_uve = zeros(num_features, 1);
for i = 1:num_features
mc_uve(i) = beta * w(i)^2 + gamma * (Sw(i, i) / Sb(i, i));
end
% 选择特征
[~, sorted_indices] = sort(mc_uve, 'descend');
selected_features = sorted_indices(1:round(num_features/2)); % 选择前一半的特征
end
阅读全文