请说明下面这段程序每一个量代表什么:%%%%机组组合%%%%; %%%%线性化MILP模型%%%; %%%考虑风电场景、不同电价场景、电动汽车充放电%%% %%%电动汽车数量按照10倍压缩%%%% clear clc %%%%%机组组合数据%%%%%%%%%%%; Ji=10;%机组数量; Time=24;%时间尺度; SS=20;%场景数量; Pmax=[455,455,130,130,162,80,85,55,55,55];%机组最大出力; Pmin=[150,150,20,20,25,20,25,10,10,10];%机组最小出力; a=[1000,970,700,680,450,370,480,660,665,670]; b=[16.19,17.26,16.60,16.50,19.7,22.26,27.74,25.92,27.27,27.79]; c=[0.00048,0.00031,0.002,0.0021,0.00398,0.00712,0.00079,0.00413,0.00222,0.00173]; Ton=[8,8,5,5,6,3,3,1,1,1];%最小开机时间; Toff=[8,8,5,5,6,3,3,1,1,1];%最小停机时间; Tcs=[5,5,4,4,4,2,2,0,0,0];%冷启动时间; Sh=[4500,5000,550,560,900,170,260,30,30,30];%热启动费用; Sc=[9000,10000,1100,1120,1800,340,520,60,60,60];%冷启动费用; T=[8,8,-5,-5,-6,-3,-3,-1,-1,-1];%初始运行状态; Xbefore=zeros(8,10); for t=1:8 for j=1:10 if T(j)+t<=0 Xbefore(t,j)=0; else Xbefore(t,j)=1; end end end Xf=Xbefore(1,:);%初始序列; Xbefore=[zeros(1,10);Xbefore]; PL=[700,750,850,950,1000,1100,1150,1200,1300,1400,1450,1500,1400,1300,1200,1050,1000,1100,1200,1400,1300,1100,900,800];%日负荷; delta_hot=[130,130,60,60,90,40,40,40,40,40];%爬坡速率 delta_cold=[150,150,20,20,25,20,25,10,10,10];%开停机爬坡速率 R=0.1*PL;%备用容量,这里取10%PL; Pf=[89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84;99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76;100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100;86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52;93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54;85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14;76.14,76.14,76.14,76.14,76.14,68.36,68.36,68.36,61.72,61.72,61.72,61.72,61.72,61.72,58.32,58.32,58.32,58.76,58.76,58.76;57.72,57.72,57.72,57.72,57.72,42.48,42
时间: 2023-09-28 09:04:04 浏览: 89
这段程序是一个线性化MILP模型,考虑了风电场景、不同电价场景、电动汽车充放电,其中各个变量的含义如下:
- Ji:机组数量
- Time:时间尺度
- SS:场景数量
- Pmax:机组最大出力
- Pmin:机组最小出力
- a:机组的二次方程系数a
- b:机组的二次方程系数b
- c:机组的二次方程系数c
- Ton:最小开机时间
- Toff:最小停机时间
- Tcs:冷启动时间
- Sh:热启动费用
- Sc:冷启动费用
- T:初始运行状态
- Xbefore:各机组在之前都处于运行状态的情况下,是否能够在当前时刻运行的二进制变量
- Xf:初始序列
- PL:日负荷
- delta_hot:机组的热启动爬坡速率
- delta_cold:机组的开停机爬坡速率
- R:备用容量
- Pf:机组的发电量,是一个二维数组,第一维表示机组,第二维表示时间。
相关问题
请解释这段程序:%%%%机组组合%%%%; %%%%线性化MILP模型%%%; %%%考虑风电场景、不同电价场景、电动汽车充放电%%% %%%电动汽车数量按照10倍压缩%%%% clear clc %%%%%机组组合数据%%%%%%%%%%%; Ji=10;%机组数量; Time=24;%时间尺度; SS=20;%场景数量; Pmax=[455,455,130,130,162,80,85,55,55,55];%机组最大出力; Pmin=[150,150,20,20,25,20,25,10,10,10];%机组最小出力; a=[1000,970,700,680,450,370,480,660,665,670]; b=[16.19,17.26,16.60,16.50,19.7,22.26,27.74,25.92,27.27,27.79]; c=[0.00048,0.00031,0.002,0.0021,0.00398,0.00712,0.00079,0.00413,0.00222,0.00173]; Ton=[8,8,5,5,6,3,3,1,1,1];%最小开机时间; Toff=[8,8,5,5,6,3,3,1,1,1];%最小停机时间; Tcs=[5,5,4,4,4,2,2,0,0,0];%冷启动时间; Sh=[4500,5000,550,560,900,170,260,30,30,30];%热启动费用; Sc=[9000,10000,1100,1120,1800,340,520,60,60,60];%冷启动费用; T=[8,8,-5,-5,-6,-3,-3,-1,-1,-1];%初始运行状态; Xbefore=zeros(8,10); for t=1:8 for j=1:10 if T(j)+t<=0 Xbefore(t,j)=0; else Xbefore(t,j)=1; end end end Xf=Xbefore(1,:);%初始序列; Xbefore=[zeros(1,10);Xbefore]; PL=[700,750,850,950,1000,1100,1150,1200,1300,1400,1450,1500,1400,1300,1200,1050,1000,1100,1200,1400,1300,1100,900,800];%日负荷; delta_hot=[130,130,60,60,90,40,40,40,40,40];%爬坡速率 delta_cold=[150,150,20,20,25,20,25,10,10,10];%开停机爬坡速率 R=0.1*PL;%备用容量,这里取10%PL; Pf=[89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84;99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76;100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100;86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52;93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54;85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14;76.14,76.14,76.14,76.14,76.14,68.36,68.36,68.36,61.72,61.72,61.72,61.72,61.72,61.72,58.32,58.32,58.32,58.76,58.76,58.76;57.72,57.72,57.72,57.72,57.72,42.48,42
这段程序是一个线性化的MILP模型,用于考虑风电场景、不同电价场景、电动汽车充放电的情况下,对机组组合进行优化调度。其中包含了机组组合数据、日负荷、备用容量、爬坡速率等参数。程序中通过对机组的最大最小出力、启动停机时间、冷热启动费用等参数进行优化,以最小化机组的总成本,同时保证电网的供需平衡和备用容量要求。
阅读全文