解析 def explore_city_data(self,city_data): housing_prices = city_data.target housing_features = city_data.data num_houses = np.shape(city_data.data) num_features = np.shape(city_data.data) min_price = np.min(city_data.target) max_price = np.max(city_data.target) mean_price = np.mean(city_data.target) median_price = np.median(city_data.target) stand_dev = np.std(city_data.target)
时间: 2024-04-28 17:19:19 浏览: 100
Shell-Right-Menu.rar_explore.exe_shell menu_外壳扩展
这段代码定义了一个名为"explore_city_data"的函数,该函数有一个参数"city_data"。该函数的主要目的是从给定的城市数据中提取一些基本信息,包括房屋价格、特征数量、房屋数量、最小价格、最大价格、平均价格、中位价格和标准差。
具体来说,该函数将从给定的城市数据中提取房屋价格和特征,并计算出特征数量和房屋数量。然后,该函数将使用NumPy库中的函数来计算出最小价格、最大价格、平均价格、中位价格和标准差,这些计算都是基于房屋价格数据。
最后的结果将作为函数的返回值,因此,该函数将返回一个元组,其中包含所有的计算结果。
阅读全文