S32K144-EVB开发板CAN实例代码

时间: 2023-10-01 14:06:50 浏览: 44
以下是S32K144-EVB开发板CAN实例代码: ```c #include "S32K144.h" #include "can.h" #include "clocks_and_modes.h" #include "gpio.h" #include "interrupt_manager.h" #define CAN0_TX_PIN 27U #define CAN0_RX_PIN 26U #define CAN0_TX_MUX 2U #define CAN0_RX_MUX 2U #define CAN0_RX_MSG_BUF_NUM (4U) #define CAN0_BASE_ADDR (0x40024000U) #define CAN0_RX_FIFO_ID (0x100U) #define CAN0_RX_FIFO_NUM (8U) static uint8_t can0RxMsgBuf[CAN0_RX_MSG_BUF_NUM][CAN_MESSAGE_BUFFER_MAX_PAYLOAD_SIZE]; void Can0_RxIsr(void); void InitCan0(void) { /* Enable clock for PORTA */ PCC->PCCn[PCC_PORTA_INDEX] |= PCC_PCCn_CGC_MASK; /* Configure CAN0_TX_PIN and CAN0_RX_PIN as alternative function (Alt2) */ PORTA->PCR[CAN0_TX_PIN] = PORT_PCR_MUX(CAN0_TX_MUX); PORTA->PCR[CAN0_RX_PIN] = PORT_PCR_MUX(CAN0_RX_MUX); /* Set the bit rate to 500 kbps with a 8 MHz clock */ const uint32_t can0ClkFreq = 8000000U; const uint32_t baudRate = 500000U; const uint32_t prescaler = (can0ClkFreq / (baudRate * 20U)) - 1U; CAN0->CTRL1 &= ~CAN_CTRL1_CLKSRC_MASK; CAN0->CTRL1 |= CAN_CTRL1_CLKSRC(1U); CAN0->CTRL1 |= CAN_CTRL1_PRESDIV(prescaler); /* Enable CAN0 */ PCC->PCCn[PCC_FlexCAN0_INDEX] |= PCC_PCCn_CGC_MASK; /* Enable individual RX FIFO filters */ CAN0->MCR |= CAN_MCR_IRMQ_MASK; /* Enable RX FIFO */ CAN0->MCR |= CAN_MCR_RFEN_MASK; /* Configure RX FIFO ID filter */ CAN0->RXFIFO.IDTABLE[0] = 0x80000000U; CAN0->RXFIFO.IDTABLE[1] = 0x80000000U; /* Configure RX FIFO filter element */ CAN0->RXIMR[CAN0_RX_FIFO_NUM] = 0xFFFFFFFFU; CAN0->RXMGMASK = 0x80000000U; CAN0->RXFGMASK = 0x80000000U; /* Enable RX FIFO interrupt */ CAN0->IMASK1 |= CAN_IMASK1_BUF5M_MASK; /* Configure RX message buffers */ for (uint32_t msgBufIdx = 0U; msgBufIdx < CAN0_RX_MSG_BUF_NUM; msgBufIdx++) { /* Configure RX message buffer filter */ CAN0->RAMn[msgBufIdx].ID = (CAN_RAMn_ID_STD(0x7FFU) | CAN_RAMn_IDE_MASK); /* Configure RX message buffer payload size */ CAN0->RAMn[msgBufIdx].CS = CAN_CS_DLC(CAN_MESSAGE_BUFFER_MAX_PAYLOAD_SIZE); /* Configure RX message buffer for reception */ CAN0->RAMn[msgBufIdx].CS |= CAN_CS_CODE(CAN_CS_CODE_RX_INACTIVE); } /* Configure NVIC for RX FIFO interrupt */ const IRQn_Type can0RxIrqId = IRQ_CAN0_ORed_Message_buffer; INT_SYS_EnableIRQ(can0RxIrqId); INT_SYS_SetPriority(can0RxIrqId, 3U); } void Can0_RxIsr(void) { uint32_t msgBufIdx = 0U; /* Read RX FIFO and dispatch messages */ while (CAN0->IFLAG1 & CAN_IFLAG1_BUF5I_MASK) { /* Clear RX FIFO interrupt flag */ CAN0->IFLAG1 |= CAN_IFLAG1_BUF5I_MASK; /* Read RX FIFO element */ const uint32_t fifoElemIdx = 0U; const uint32_t fifoElemAddr = (CAN0_BASE_ADDR + 0x00000C00U + (fifoElemIdx * 0x10U)); uint32_t fifoElemData[4] = {0U}; for (uint32_t i = 0U; i < 4U; i++) { fifoElemData[i] = (*(volatile uint32_t *)(fifoElemAddr + (i * 4U))); } /* Process RX FIFO element */ if ((fifoElemData[0] & CAN_RAMn_IDE_MASK) == CAN_RAMn_IDE_MASK) { /* Extended ID */ const uint32_t rxMsgId = (fifoElemData[0] & CAN_RAMn_ID_MASK_EXT); const uint8_t rxMsgDlc = (fifoElemData[1] & CAN_RAMn_CS_DLC_MASK); uint8_t rxMsgPayload[CAN_MESSAGE_BUFFER_MAX_PAYLOAD_SIZE] = {0U}; for (uint32_t i = 0U; i < (rxMsgDlc >> 2U); i++) { ((uint32_t *)rxMsgPayload)[i] = fifoElemData[i + 2U]; } /* Find free RX message buffer and configure it for reception */ for (msgBufIdx = 0U; msgBufIdx < CAN0_RX_MSG_BUF_NUM; msgBufIdx++) { if ((CAN0->RAMn[msgBufIdx].CS & CAN_CS_CODE_MASK) == CAN_CS_CODE_RX_INACTIVE) { break; } } if (msgBufIdx < CAN0_RX_MSG_BUF_NUM) { /* Configure RX message buffer filter */ CAN0->RAMn[msgBufIdx].ID = (CAN_RAMn_ID_EXT(rxMsgId) | CAN_RAMn_IDE_MASK); /* Configure RX message buffer payload size */ CAN0->RAMn[msgBufIdx].CS = CAN_CS_DLC(rxMsgDlc); /* Configure RX message buffer for reception */ CAN0->RAMn[msgBufIdx].CS |= CAN_CS_CODE(CAN_CS_CODE_RX_FULL); /* Copy RX message payload */ for (uint32_t i = 0U; i < CAN_MESSAGE_BUFFER_MAX_PAYLOAD_SIZE; i++) { can0RxMsgBuf[msgBufIdx][i] = rxMsgPayload[i]; } } else { /* RX message buffer not available */ } } else { /* Standard ID */ } } } void SendCan0Msg(const uint32_t msgId, const uint8_t * const msgPayload, const uint32_t msgPayloadSize) { /* Find free TX message buffer and configure it for transmission */ uint32_t txMsgBufIdx = 0U; for (txMsgBufIdx = 0U; txMsgBufIdx < CAN0_TX_MSG_BUF_NUM; txMsgBufIdx++) { if ((CAN0->RAMn[txMsgBufIdx].CS & CAN_CS_CODE_MASK) == CAN_CS_CODE_TX_INACTIVE) { break; } } if (txMsgBufIdx < CAN0_TX_MSG_BUF_NUM) { /* Configure TX message buffer ID */ CAN0->RAMn[txMsgBufIdx].ID = (CAN_RAMn_ID_STD(msgId) | CAN_RAMn_IDE_MASK); /* Configure TX message buffer payload size */ CAN0->RAMn[txMsgBufIdx].CS = CAN_CS_DLC(msgPayloadSize); /* Copy TX message payload */ for (uint32_t i = 0U; i < msgPayloadSize; i++) { can0TxMsgBuf[txMsgBufIdx][i] = msgPayload[i]; } /* Configure TX message buffer for transmission */ CAN0->RAMn[txMsgBufIdx].CS |= CAN_CS_CODE(CAN_CS_CODE_TX_INACTIVE); } else { /* TX message buffer not available */ } } int main(void) { /* Init board hardware */ InitClocksAndModes(); InitGpio(); InitCan0(); /* Send CAN message */ const uint32_t msgId = 0x123U; const uint8_t msgPayload[] = {0x11U, 0x22U, 0x33U}; const uint32_t msgPayloadSize = sizeof(msgPayload); SendCan0Msg(msgId, msgPayload, msgPayloadSize); /* Main loop */ while (1U) { /* Do nothing */ } } ``` 这个例程中,我们使用了S32K144-EVB开发板上的CAN0模块,并且配置了一个接收FIFO和四个接收消息缓冲区。在初始化过程中,我们设置了CAN0的波特率为500 kbps,并且启用了CAN0模块和RX FIFO中断。在主函数中,我们发送了一个CAN消息,并且在接收中断处理函数Can0_RxIsr中读取并处理了接收到的CAN消息。

相关推荐

最新推荐

recommend-type

S32K148 CAN波特率和采样点计算

简单整理S32K148的Bit Rate和Sample Point的计算过程,具体可以看规格书
recommend-type

S32K144 SPI速率

S32K144单片机的SPI速率的调试与提升,将遇到的困惑与问题和怎么解决的跟大家分享,让程序猿们少走弯路。
recommend-type

S32K144的LPSPI使用配置详解

手头的项目要使用NXP的S32K144,之前从没用过,这个芯片的技术支持不是很多,LPSPI的使用,自己分析了官方的HAL库,慢慢调试总结的配置详解,里面有代码和我用示波器检测的波形图,很清晰,一看就明白了;
recommend-type

关于S32K系列驱动之----SPI(SDK)开发分享.docx

关于S32K系列驱动之SPI(SDK144/6芯片)的demo版开发测试结果分享,内附SPI关于S32DS PE的如何配置说明、使用demo版测试的代码分享 ,调试过程遇到的问题以及目前的解决方案,可以保证正常使用SPI
recommend-type

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。