分别解释先来先服务、短作业优先、最高响应比、时间片轮转法、多级队列法这五种调度算法

时间: 2023-10-23 11:11:20 浏览: 261
好的,我了解了您的要求和限制条件。下面是五种调度算法的简要解释: 1. 先来先服务(FCFS,First Come First Serve)调度算法:按照任务到达的先后顺序进行调度,先来的任务先执行。具有简单易懂、易于实现的特点,但不考虑任务的特性,可能导致平均等待时间较长。 2. 短作业优先(SJF,Shortest Job First)调度算法:根据任务的执行时间长短进行调度,执行时间短的任务优先执行。具有平均等待时间较短的优点,但无法预测任务执行时间,可能会导致长任务等待时间过长。 3. 最高响应比(HRRN,Highest Response Ratio Next)调度算法:综合考虑任务等待时间和执行时间长短,选择响应比最高的任务进行调度。具有比 SJF 更好的性能表现,但需要频繁计算响应比,算法复杂度较高。 4. 时间片轮转(RR,Round Robin)调度算法:将 CPU 时间分成若干个时间片,按照 FCFS 原则进行调度,每个任务执行一个时间片后转到下一个任务。具有公平性和可预测性,但较长任务可能需要等待多个时间片才能执行完毕。 5. 多级队列调度算法:将进程按照特定规则分成多个队列进行调度,不同队列采用不同的调度算法。一般将优先级高的任务放在前面队列,采用短作业优先或最高响应比算法,后面队列采用时间片轮转或 FCFS 等算法。具有适应不同类型任务的优点,但需要合理设置队列和调度原则。
相关问题

(1)用C语言实现对N个进程采用某种进程调度算法(如先来先服务调度、短作业优先调度、优先权调度、时间片轮转调度、多级反馈队列调度)的调度。 (2)为了清楚地观察每个进程的调度过程,程序应将每个进程的被调度情况显示出来。 (3)分析程序运行的结果,谈一下自己的收获。

在C语言中实现一个基本的进程调度算法,我们可以选择一种简单的方式,比如时间片轮转调度(Round Robin)。以下是创建这样一个调度器的基本步骤: 1. **定义数据结构**: - 创建一个包含进程ID、优先级、状态(等待/运行/就绪)和当前CPU时间片的进程结构体。 ```c typedef struct { int pid; int priority; enum {WAITING, RUNNABLE, RUNNING} status; float cpu_time; // 时间片大小 } Process; ``` 2. **进程队列管理**: - 使用链表或数组存储所有进程,可以根据需要调整数据结构。 ```c typedef struct { Process* processes; int num_processes; Process* current_process; } Scheduler; ``` 3. **调度函数**: - 实现一个调度函数,检查当前是否有等待的进程,如果有则根据时间片轮转原则分配CPU时间,如果没有则进入空闲状态。 ```c void round_robin(Scheduler* scheduler) { while (scheduler->current_process == NULL) { // 检查队列是否有进程 if (scheduler->processes->next != NULL) { // 分配时间片 scheduler->current_process = scheduler->processes; scheduler->current_process->status = RUNNABLE; scheduler->current_process->cpu_time -= CPU_TIME_INCREMENT; if (scheduler->current_process->cpu_time <= 0) { // 进程运行完毕,切换到下一个 scheduler->current_process = scheduler->current_process->next; scheduler->current_process->status = WAITING; } } else { // 如果无进程,进入等待状态 sleep(1); } } } ``` 4. **显示进程调度信息**: - 在进程开始执行和结束时打印相关信息。 ```c void print_schedule(Process* process) { printf("Process %d is now %s with CPU time: %.2f\n", process->pid, process->status == RUNNABLE ? "running" : "waiting", process->cpu_time); } // 调度前和调度后的回调 void before_run(Process* process) { print_schedule(process); } void after_run(Process* process) { print_schedule(process); } ``` 5. **主程序**: - 初始化进程队列,创建并插入进程,并调用调度函数。 ```c int main() { // ... 创建进程、添加到队列 ... scheduler.num_processes = ...; scheduler.processes = ...; round_robin(&scheduler); return 0; } ``` 6. **分析与收获**: - 可以通过观察调度日志,分析各个进程被调度的频率以及调度算法的效果,如公平性、效率等。 - 收获包括理解进程调度原理,实践了链表操作和条件控制,以及对时间片轮转调度算法的理解。

用C语言写时间片轮转调度算法和多级反馈队列调度算法

时间片轮转调度算法的C语言实现: ```c #include <stdio.h> // 进程控制块结构体 typedef struct PCB{ int pid; // 进程ID int burst; // 进程执行时间 int wait; // 进程等待时间 int tat; // 进程周转时间 int rt; // 进程剩余时间 } PCB; // 时间片轮转调度算法 void RR(PCB *p, int n, int q) { int t = 0; // 记录当前时间 int done = 0; // 记录已经完成的进程数 while(done < n) { int flag = 0; // 标记是否有进程在执行 for(int i = 0; i < n; i++) { if(p[i].rt > 0) { // 判断进程是否还有剩余时间 flag = 1; // 标记有进程在执行 if(p[i].rt > q) { // 进程还需执行时间大于时间片 t += q; // 更新当前时间 p[i].rt -= q; // 更新进程剩余时间 } else { t += p[i].rt; // 更新当前时间 p[i].wait = t - p[i].burst; // 计算进程等待时间 p[i].tat = t; // 计算进程周转时间 p[i].rt = 0; // 进程已经执行完 done++; // 已经完成的进程数+1 } } } if(flag == 0) break; // 所有进程都已经执行完 } printf("进程ID\t等待时间\t周转时间\n"); for(int i = 0; i < n; i++) { printf("%d\t%d\t%d\n", p[i].pid, p[i].wait, p[i].tat); } } int main() { // 初始化进程控制块 PCB p[] = { {1, 24, 0, 0, 24}, {2, 3, 0, 0, 3}, {3, 3, 0, 0, 3} }; int n = sizeof(p) / sizeof(PCB); int q = 4; // 时间片大小 RR(p, n, q); return 0; } ``` 多级反馈队列调度算法的C语言实现: ```c #include <stdio.h> // 进程控制块结构体 typedef struct PCB{ int pid; // 进程ID int burst; // 进程执行时间 int wait; // 进程等待时间 int tat; // 进程周转时间 int rt; // 进程剩余时间 int prio; // 进程优先级 } PCB; // 多级反馈队列调度算法 void MFQ(PCB *p, int n, int q1, int q2) { int t = 0; // 记录当前时间 int done = 0; // 记录已经完成的进程数 while(done < n) { int flag = 0; // 标记是否有进程在执行 // 第一级队列,时间片大小为q1 for(int i = 0; i < n; i++) { if(p[i].prio == 1 && p[i].rt > 0) { // 判断进程是否在第一级队列中 flag = 1; // 标记有进程在执行 if(p[i].rt > q1) { // 进程还需执行时间大于时间片 t += q1; // 更新当前时间 p[i].rt -= q1; // 更新进程剩余时间 } else { t += p[i].rt; // 更新当前时间 p[i].wait = t - p[i].burst; // 计算进程等待时间 p[i].tat = t; // 计算进程周转时间 p[i].rt = 0; // 进程已经执行完 p[i].prio = 2; // 进程优先级变为第二级 done++; // 已经完成的进程数+1 } } } // 第二级队列,时间片大小为q2 for(int i = 0; i < n; i++) { if(p[i].prio == 2 && p[i].rt > 0) { // 判断进程是否在第二级队列中 flag = 1; // 标记有进程在执行 if(p[i].rt > q2) { // 进程还需执行时间大于时间片 t += q2; // 更新当前时间 p[i].rt -= q2; // 更新进程剩余时间 } else { t += p[i].rt; // 更新当前时间 p[i].wait = t - p[i].burst; // 计算进程等待时间 p[i].tat = t; // 计算进程周转时间 p[i].rt = 0; // 进程已经执行完 done++; // 已经完成的进程数+1 } } } if(flag == 0) break; // 所有进程都已经执行完 } printf("进程ID\t等待时间\t周转时间\n"); for(int i = 0; i < n; i++) { printf("%d\t%d\t%d\n", p[i].pid, p[i].wait, p[i].tat); } } int main() { // 初始化进程控制块 PCB p[] = { {1, 10, 0, 0, 10, 1}, {2, 1, 0, 0, 1, 1}, {3, 2, 0, 0, 2, 1}, {4, 1, 0, 0, 1, 1}, {5, 5, 0, 0, 5, 1}, }; int n = sizeof(p) / sizeof(PCB); int q1 = 2; // 第一级队列时间片大小 int q2 = 4; // 第二级队列时间片大小 MFQ(p, n, q1, q2); return 0; } ```
阅读全文

相关推荐

txt
1. 实验目的 调度的实质是操作系统按照某种预定的策略来分配资源。进程调度的目的是分配CPU资源。由于进程调度程序执行的频率很高,因此调度算法的好坏直接影响到操作系统的性能。本实验的目的是编程模拟实现几种常用的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较各种算法的性能优劣。 2. 实验原理 [1]. 进程调度算法描述 进程调度算法包括先来先服务调度算法、最短作业时间优先(抢占式和非抢占式)、最高响应比调度算法4种。(每个人必须做FCFS,然后在后面的三种中任选一种,即每个人必须做2种调度算法的模拟。) [2]. 衡量算法性能的参数 计算进程的平均周转时间和平均带权周转时间。 3. 实验内容 (1)编程实现本实验的程序,要求: [1]. 建立进程的进程控制块,进程控制块至少包括: a) 进程名称; b) 进程需要执行时间; c) 进入就绪队列时间; d) 进程执行开始时间 e) 进程执行结束时间 [2]. 编程实现调度算法。 [3]. 进程及相关信息的输入。这些信息可以直接从键盘上输入,也可以从文件读取。 [4]. 时间片与时间流逝的模拟。本实验需要对算法的执行计时,程序应该提供计算时间的方法。一种最简单的方法是使用键盘,比如每敲一次空格代表一个时间片的流逝。另一种方法是使用系统时钟。 [5]. 一组进程序列执行完毕,打印出结果信息。程序需要计算出每个进程的开始执行时间、结束时间、周转时间和带权周转时间,并为整个进程序列计算平均周转时间和平均带权周转时间。程序将计算结果按一定的格式显示在计算机屏幕上或输出到文件中。打印出进程调度顺序图。 [6]. 实现数据在磁盘文件上的存取功能。 (2)对下列就绪进程序列分别使用上面的几种算法进行调度,计算每种算法下的平均周转时间和平均带权周转时间。 进程号 到达时间 要求执行时间 0 0 1 1 1 35 2 2 10 3 3 5 4 6 9 5 7 21 6 9 35 7 11 23 8 12 42 9 13 1 10 14 7 11 20 5 12 23 3 13 24 22 14 25 31

最新推荐

recommend-type

模拟进程调度功能的设计与实现

4. **调度算法的实现**:学生将实现四种调度算法:先来先服务(FCFS)、优先级调度、时间片轮转(RR)和多级反馈轮转(MFQ)。每种算法都有其特定的优缺点,通过编程实现,学生能够更好地理解它们的运作原理。 5. *...
recommend-type

操作系统实验_多级反馈队列调度算法

操作系统实验中的多级反馈队列调度算法是一种优化进程调度的重要策略,旨在提高系统效率和响应时间。本实验旨在让学生深入理解和应用操作系统中的相关概念,包括进程控制块、进程状态转换、非阻塞输入、图形用户界面...
recommend-type

探索zinoucha-master中的0101000101奥秘

资源摘要信息:"zinoucha:101000101" 根据提供的文件信息,我们可以推断出以下几个知识点: 1. 文件标题 "zinoucha:101000101" 中的 "zinoucha" 可能是某种特定内容的标识符或是某个项目的名称。"101000101" 则可能是该项目或内容的特定代码、版本号、序列号或其他重要标识。鉴于标题的特殊性,"zinoucha" 可能是一个与数字序列相关联的术语或项目代号。 2. 描述中提供的 "日诺扎 101000101" 可能是标题的注释或者补充说明。"日诺扎" 的含义并不清晰,可能是人名、地名、特殊术语或是一种加密/编码信息。然而,由于描述与标题几乎一致,这可能表明 "日诺扎" 和 "101000101" 是紧密相关联的。如果 "日诺扎" 是一个密码或者编码,那么 "101000101" 可能是其二进制编码形式或经过某种特定算法转换的结果。 3. 标签部分为空,意味着没有提供额外的分类或关键词信息,这使得我们无法通过标签来获取更多关于该文件或项目的信息。 4. 文件名称列表中只有一个文件名 "zinoucha-master"。从这个文件名我们可以推测出一些信息。首先,它表明了这个项目或文件属于一个更大的项目体系。在软件开发中,通常会将主分支或主线版本命名为 "master"。所以,"zinoucha-master" 可能指的是这个项目或文件的主版本或主分支。此外,由于文件名中同样包含了 "zinoucha",这进一步确认了 "zinoucha" 对该项目的重要性。 结合以上信息,我们可以构建以下几个可能的假设场景: - 假设 "zinoucha" 是一个项目名称,那么 "101000101" 可能是该项目的某种特定标识,例如版本号或代码。"zinoucha-master" 作为主分支,意味着它包含了项目的最稳定版本,或者是开发的主干代码。 - 假设 "101000101" 是某种加密或编码,"zinoucha" 和 "日诺扎" 都可能是对其进行解码或解密的钥匙。在这种情况下,"zinoucha-master" 可能包含了用于解码或解密的主算法或主程序。 - 假设 "zinoucha" 和 "101000101" 代表了某种特定的数据格式或标准。"zinoucha-master" 作为文件名,可能意味着这是遵循该标准或格式的最核心文件或参考实现。 由于文件信息非常有限,我们无法确定具体的领域或背景。"zinoucha" 和 "日诺扎" 可能是任意领域的术语,而 "101000101" 作为二进制编码,可能在通信、加密、数据存储等多种IT应用场景中出现。为了获得更精确的知识点,我们需要更多的上下文信息和具体的领域知识。
recommend-type

【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例

![【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例](https://img-blog.csdnimg.cn/562b8d2b04d343d7a61ef4b8c2f3e817.png) # 摘要 本文旨在探讨Qt与OpenGL集成的实现细节及其在图形性能优化方面的重要性。文章首先介绍了Qt与OpenGL集成的基础知识,然后深入探讨了在Qt环境中实现OpenGL高效渲染的技术,如优化渲染管线、图形数据处理和渲染性能提升策略。接着,文章着重分析了框选功能的图形性能优化,包括图形学原理、高效算法实现以及交互设计。第四章通过高级案例分析,比较了不同的框选技术,并探讨了构
recommend-type

ffmpeg 指定屏幕输出

ffmpeg 是一个强大的多媒体处理工具,可以用来处理视频、音频和字幕等。要使用 ffmpeg 指定屏幕输出,可以使用以下命令: ```sh ffmpeg -f x11grab -s <width>x<height> -r <fps> -i :<display>.<screen>+<x_offset>,<y_offset> output_file ``` 其中: - `-f x11grab` 指定使用 X11 屏幕抓取输入。 - `-s <width>x<height>` 指定抓取屏幕的分辨率,例如 `1920x1080`。 - `-r <fps>` 指定帧率,例如 `25`。 - `-i
recommend-type

个人网站技术深度解析:Haskell构建、黑暗主题、并行化等

资源摘要信息:"个人网站构建与开发" ### 网站构建与部署工具 1. **Nix-shell** - Nix-shell 是 Nix 包管理器的一个功能,允许用户在一个隔离的环境中安装和运行特定版本的软件。这在需要特定库版本或者不同开发环境的场景下非常有用。 - 使用示例:`nix-shell --attr env release.nix` 指定了一个 Nix 环境配置文件 `release.nix`,从而启动一个专门的 shell 环境来构建项目。 2. **Nix-env** - Nix-env 是 Nix 包管理器中的一个命令,用于环境管理和软件包安装。它可以用来安装、更新、删除和切换软件包的环境。 - 使用示例:`nix-env -if release.nix` 表示根据 `release.nix` 文件中定义的环境和依赖,安装或更新环境。 3. **Haskell** - Haskell 是一种纯函数式编程语言,以其强大的类型系统和懒惰求值机制而著称。它支持高级抽象,并且广泛应用于领域如研究、教育和金融行业。 - 标签信息表明该项目可能使用了 Haskell 语言进行开发。 ### 网站功能与技术实现 1. **黑暗主题(Dark Theme)** - 黑暗主题是一种界面设计,使用较暗的颜色作为背景,以减少对用户眼睛的压力,特别在夜间或低光环境下使用。 - 实现黑暗主题通常涉及CSS中深色背景和浅色文字的设计。 2. **使用openCV生成缩略图** - openCV 是一个开源的计算机视觉和机器学习软件库,它提供了许多常用的图像处理功能。 - 使用 openCV 可以更快地生成缩略图,通过调用库中的图像处理功能,比如缩放和颜色转换。 3. **通用提要生成(Syndication Feed)** - 通用提要是 RSS、Atom 等格式的集合,用于发布网站内容更新,以便用户可以通过订阅的方式获取最新动态。 - 实现提要生成通常需要根据网站内容的更新来动态生成相应的 XML 文件。 4. **IndieWeb 互动** - IndieWeb 是一个鼓励人们使用自己的个人网站来发布内容,而不是使用第三方平台的运动。 - 网络提及(Webmentions)是 IndieWeb 的一部分,它允许网站之间相互提及,类似于社交媒体中的评论和提及功能。 5. **垃圾箱包装/网格系统** - 垃圾箱包装可能指的是一个用于暂存草稿或未发布内容的功能,类似于垃圾箱回收站。 - 网格系统是一种布局方式,常用于网页设计中,以更灵活的方式组织内容。 6. **画廊/相册/媒体类型/布局** - 这些关键词可能指向网站上的图片展示功能,包括但不限于相册、网络杂志、不同的媒体展示类型和布局设计。 7. **标签/类别/搜索引擎** - 这表明网站具有内容分类功能,用户可以通过标签和类别来筛选内容,并且可能内置了简易的搜索引擎来帮助用户快速找到相关内容。 8. **并行化(Parallelization)** - 并行化在网站开发中通常涉及将任务分散到多个处理单元或线程中执行,以提高效率和性能。 - 这可能意味着网站的某些功能被设计成可以同时处理多个请求,比如后台任务、数据处理等。 9. **草稿版本+实时服务器** - 草稿版本功能允许用户保存草稿并能在需要时编辑和发布。 - 实时服务器可能是指网站采用了实时数据同步的技术,如 WebSockets,使用户能够看到内容的实时更新。 ### 总结 上述信息展示了一个人在个人网站开发过程中所涉及到的技术和功能实现,包括了环境配置、主题设计、内容管理和用户体验优化。从使用Nix-shell进行环境隔离和依赖管理到实现一个具有高级功能和良好用户体验的个人网站,每个技术点都是现代Web开发中的关键组成部分。
recommend-type

Qt框选功能的国际化实践:支持多语言界面的核心技术解析

![Qt框选功能的国际化实践:支持多语言界面的核心技术解析](https://opengraph.githubassets.com/1e33120fcc70e1a474ab01c7262f9ee89247dfbff9cf5cb5b767da34e5b70381/LCBTS/Qt-read-file) # 摘要 本文系统地探讨了Qt框架下多语言界面设计与国际化的实现原理和技术细节。首先介绍了Qt国际化框架的基础知识和多语言界面设计的基本原理,包括文本处理、资源文件管理、核心API的应用等。随后,文章详细阐述了设计可翻译用户界面、动态语言切换和界面更新以及测试和调试多语言界面的实践技巧。深入理解
recommend-type

内网如何运行docker pull mysql:5.7

要在内网中运行Docker的pull命令来获取MySQL 5.7镜像,可以按照以下步骤进行操作: 1. 确保在内网中的计算机上安装了Docker。 2. 打开终端或命令提示符,并使用以下命令登录到Docker镜像仓库: ```shell docker login <repository> ``` 将`<repository>`替换为MySQL镜像仓库的地址,例如`mysql`或`docker.io/mysql`。 3. 输入用户名和密码以登录到镜像仓库。 4. 使用以下命令从镜像仓库拉取MySQL 5.7镜像: ```shell docker pull <repository>/my
recommend-type

ImgToString开源工具:图像转字符串轻松实现

资源摘要信息:"ImgToString是一款开源软件,其主要功能是将图像文件转换为字符串。这种转换方式使得图像文件可以被复制并粘贴到任何支持文本输入的地方,比如文本编辑器、聊天窗口或者网页代码中。通过这种方式,用户无需附加文件即可分享图像信息,尤其适用于在文本模式的通信环境中传输图像数据。" 在技术实现层面,ImgToString可能采用了一种特定的编码算法,将图像文件的二进制数据转换为Base64编码或其他编码格式的字符串。Base64是一种基于64个可打印字符来表示二进制数据的编码方法。由于ASCII字符集只有128个字符,而Base64使用64个字符,因此可以确保转换后的字符串在大多数文本处理环境中能够安全传输,不会因为特殊字符而被破坏。 对于jpg或png等常见的图像文件格式,ImgToString软件需要能够解析这些格式的文件结构,提取图像数据,并进行相应的编码处理。这个过程通常包括读取文件头信息、确定图像尺寸、颜色深度、压缩方式等关键参数,然后根据这些参数将图像的像素数据转换为字符串形式。对于jpg文件,可能还需要处理压缩算法(如JPEG算法)对图像数据的处理。 使用开源软件的好处在于其源代码的开放性,允许开发者查看、修改和分发软件。这为社区提供了改进和定制软件的机会,同时也使得软件更加透明,用户可以对软件的工作方式更加放心。对于ImgToString这样的工具而言,开放源代码意味着可以由社区进行扩展,比如增加对其他图像格式的支持、优化转换速度、提高编码效率或者增加用户界面等。 在使用ImgToString或类似的工具时,需要注意的一点是编码后的字符串可能会变得非常长,尤其是对于高分辨率的图像。这可能会导致在某些场合下使用不便,例如在社交媒体或者限制字符数的平台上分享。此外,由于字符串中的数据是图像的直接表示,它们可能会包含非打印字符或特定格式的字符串,这在某些情况下可能会导致兼容性问题。 对于开发者而言,ImgToString这类工具在自动化测试、数据备份、跨平台共享图像资源等多种场景中非常有用。在Web开发中,可以利用此类工具将图像数据嵌入到HTML或CSS文件中,或者通过RESTful API传输图像数据时使用字符串形式。在自动化测试中,可以将预期的图像输出以字符串形式保存在测试脚本中,用于比对生成的图像字符串,以此验证图像内容的正确性。 综上所述,ImgToString作为一款开源软件,提供了一种将图像文件转换为字符串的实用方法。这不仅为图像的传输和分享提供了便利,也为开发者提供了在不同应用场景中集成图像数据的新思路。同时,其开源的特性也为社区贡献和软件改进提供了可能,使得软件本身能够更加完善,满足更多的需求。
recommend-type

Qt框选功能安全性增强指南:防止恶意操作的有效策略

![Qt框选功能安全性增强指南:防止恶意操作的有效策略](https://ddgobkiprc33d.cloudfront.net/f5da12c0-45ae-492a-a46b-b99d84bb60c4.png) # 摘要 本文聚焦于Qt框架中框选功能的安全性问题。首先介绍了Qt框选功能的基础概念和安全性基础,包括Qt的安全架构、安全编码标准和安全设计原则。接着,分析了框选功能中权限管理的必要性和实现方法。随后,探讨了如何通过多种防御策略,如输入验证、事件监听和安全审计,来识别和防御恶意操作。文章进一步详述了进行安全测试与验证的重要性,以及如何模拟攻击以修复安全漏洞。最后,通过案例研究,本