python 深度学习车牌识别代码
时间: 2023-08-14 19:06:35 浏览: 110
毕业设计:Python基于深度学习的车牌识别系统的设计与实现(源码 + 数据库 + 说明文档)
以下是一个简单的基于CNN的车牌字符识别代码示例:
```python
import numpy as np
import cv2
import tensorflow as tf
# 加载训练好的模型
model = tf.keras.models.load_model('model.h5')
# 字符集
char_set = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
# 车牌字符识别函数
def recognize_character(img):
# 图像预处理
img = cv2.resize(img, (32, 40))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = np.expand_dims(img, axis=-1)
img = np.expand_dims(img, axis=0)
img = img / 255.0
# 使用模型进行预测
pred = model.predict(img)
pred = np.argmax(pred, axis=-1)
return char_set[int(pred)]
# 车牌字符分割函数
def segment_characters(img):
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 进行二值化处理
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 进行形态学处理
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# 查找轮廓
contours, hierarchy = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 遍历轮廓,分割字符
characters = []
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
area = w * h
if area > 200 and area < 800:
roi = img[y:y+h, x:x+w]
character = recognize_character(roi)
characters.append((character, (x, y, w, h)))
return characters
# 测试代码
img = cv2.imread('test.jpg')
characters = segment_characters(img)
print(characters)
```
以上代码实现了车牌字符分割和识别,其中模型文件`model.h5`需提前训练好。测试时,将测试图像`test.jpg`放入代码所在目录并运行即可。
阅读全文