矩阵相乘的strausen算法用python代码实现
时间: 2024-09-27 18:03:47 浏览: 41
几种边缘检测算法对比及python代码实现
5星 · 资源好评率100%
矩阵相乘的Strassen算法是一种并行化的快速矩阵乘法算法,它将大矩阵分解成更小的部分,通过7次基本的矩阵运算代替传统的8次。虽然对于现代计算机来说,常规的矩阵乘法通常已经足够快,但在某些特定场景,如计算密集型任务或教学演示,Strassen算法可以展示其优势。
以下是使用Python实现Strassen算法的一个简单版本。注意这个版本并未处理边界情况,仅适用于正方形矩阵,并未优化性能:
```python
def add_subtract(a, b, c):
return [[a[i][j] + b[i][j] - c[i][j] for j in range(n)] for i in range(n)]
def matrix_multiply_strassen(a, b):
n = len(a)
if n <= 1:
return a * b
# Split matrices into quarters
a11, a12, a21, a22 = split_matrix(a)
b11, b12, b21, b22 = split_matrix(b)
# Perform 7 operations (strassen steps)
p1 = matrix_multiply_strassen(add_subtract(a11, a22, b22), add_subtract(b11, b22, a21))
p2 = matrix_multiply_strassen(add_subtract(a21, a22, b11), a11)
p3 = matrix_multiply_strassen(a22, add_subtract(b21, b11, a11))
p4 = matrix_multiply_strassen(a11, b12)
p5 = matrix_multiply_strassen(add_subtract(a21, a11, b11), b22)
p6 = matrix_multiply_strassen(add_subtract(a12, a22, b21), a21)
p7 = matrix_multiply_strassen(a12, add_subtract(b11, b12, a22))
# Assemble the result
c11 = add_subtract(p1 + p4, p5, p6)
c12 = add_subtract(p3, p5)
c21 = add_subtract(p2, p4)
c22 = p1 + p3 + p2 + p6
# Merge the parts back together
return merge_matrices(c11, c12, c21, c22)
# Helper functions to split and merge matrices
def split_matrix(matrix):
n = len(matrix)
return [matrix[:n//2][:n//2], matrix[:n//2][n//2:], matrix[n//2:][:n//2], matrix[n//2:][n//2:]]
def merge_matrices(*matrices):
# ... implementation to combine the split matrices back into one big matrix
pass
```
阅读全文