用C# 实现车辆微信信息获取

时间: 2024-06-06 09:09:02 浏览: 18
语言编写程序有哪些优点? 1. C语言可以直接调用底层的机器功能,如硬件控制、内存管理等,因此程序的执行效率比较高。 2. C语言是一种结构化的语言,代码清晰易读,程序易于维护。 3. C语言具有跨平台性,可以用于不同硬件和操作系统上的开发。 4. C语言具有丰富的库函数和工具库,提供了很多常用功能的实现方法。 5. C语言是目前很多编程语言的基础语言,掌握C语言可以更好的理解和应用其他编程语言。
相关问题

使用c#实现微信服务号获取用户openid

c++进行字符串替换的方法是什么? 在 C++ 中,可以使用 `string` 类型的对象的 `replace` 方法来进行字符串替换。 例如,假设你想要将字符串 "Hello, World!" 中的所有小写字母 o 替换为大写字母 O,可以使用以下代码: ``` #include <string> #include <iostream> int main() { std::string s = "Hello, World!"; s.replace(s.begin(), s.end(), 'o', 'O'); std::cout << s << std::endl; return 0; } ``` 输出结果为: ``` HellO, WOrld! ``` 你也可以使用 `replace` 方法的重载版本,指定替换的范围,例如: ``` s.replace(s.begin() + 6, s.begin() + 11, "planet"); ``` 这样就会将字符串 "World" 替换为 "planet"。 另外,你还可以使用 `std::string` 类型的对象的 `find` 方法来查找要替换的子字符串的位置,然后使用 `std::string` 类型的对象的 `erase` 方法来删除该子字符串,再使用 `insert` 方法来插入新的子字符串。例如: ``` std::string::size_type pos = s.find("World"); if (pos != std::string::npos) { s.erase(pos, 5); s.insert(pos, "planet"); } ``` 这样就可以将字符串 "World" 替换为 "planet"。

用C#实现微信聊天功能

实现微信聊天功能需要使用微信开发者工具和微信公众平台开发接口进行开发。以下是一个简单的实现微信聊天功能的C#代码示例: ```csharp using System; using System.Net; using System.IO; using System.Text; using System.Web.Script.Serialization; namespace WeChatChat { class Program { static void Main(string[] args) { // 设置微信公众平台的参数 string appId = "your_app_id"; string appSecret = "your_app_secret"; string token = "your_token"; string encodingAESKey = "your_encoding_aes_key"; // 获取微信服务器发送的消息 string postStr = GetPostStr(); if (!string.IsNullOrEmpty(postStr)) { // 对消息进行解密 string decryptStr = WeChatEncrypt.AESDecrypt(postStr, encodingAESKey, appId); if (!string.IsNullOrEmpty(decryptStr)) { // 解析消息内容 JavaScriptSerializer serializer = new JavaScriptSerializer(); Message message = serializer.Deserialize<Message>(decryptStr); // 处理消息 if (message.MsgType == "text") { // 回复消息 string content = "您发送的消息是:" + message.Content; string response = WeChatEncrypt.AESEncrypt(WeChatResponse.TextResponse(message.FromUserName, message.ToUserName, content), encodingAESKey, appId); Console.WriteLine(response); } } } } // 获取微信服务器发送的消息 private static string GetPostStr() { Stream inputStream = Console.OpenStandardInput(); byte[] bytes = new byte[1024]; int length = inputStream.Read(bytes, 0, 1024); return Encoding.UTF8.GetString(bytes, 0, length); } } // 微信消息类 public class Message { public string ToUserName { get; set; } public string FromUserName { get; set; } public long CreateTime { get; set; } public string MsgType { get; set; } public string Content { get; set; } public string MsgId { get; set; } } // 微信消息响应类 public class WeChatResponse { public static string TextResponse(string toUserName, string fromUserName, string content) { string response = string.Format(@"<xml> <ToUserName><![CDATA[{0}]]></ToUserName> <FromUserName><![CDATA[{1}]]></FromUserName> <CreateTime>{2}</CreateTime> <MsgType><![CDATA[text]]></MsgType> <Content><![CDATA[{3}]]></Content> </xml>", toUserName, fromUserName, DateTime.Now.Ticks, content); return response; } } // 微信加解密类 public class WeChatEncrypt { public static string AESEncrypt(string content, string encodingAESKey, string appId) { byte[] key = Convert.FromBase64String(encodingAESKey + "="); byte[] iv = new byte[16]; Array.Copy(key, iv, 16); byte[] data = Encoding.UTF8.GetBytes(content); byte[] pad = PKCS7Padding(data); byte[] encrypted = null; using (var aes = new System.Security.Cryptography.AesCryptoServiceProvider()) { aes.KeySize = 256; aes.BlockSize = 128; aes.Key = key; aes.IV = iv; aes.Mode = System.Security.Cryptography.CipherMode.CBC; aes.Padding = System.Security.Cryptography.PaddingMode.None; using (var encryptor = aes.CreateEncryptor()) { encrypted = encryptor.TransformFinalBlock(pad, 0, pad.Length); } } string base64 = Convert.ToBase64String(encrypted); string nonce = Guid.NewGuid().ToString().Replace("-", ""); string timestamp = DateTime.Now.Ticks.ToString().Substring(0, 10); string signature = SHA1($"{token}\n{timestamp}\n{nonce}\n{base64}"); string response = string.Format(@"<xml> <Encrypt><![CDATA[{0}]]></Encrypt> <MsgSignature><![CDATA[{1}]]></MsgSignature> <TimeStamp>{2}</TimeStamp> <Nonce><![CDATA[{3}]]></Nonce> </xml>", base64, signature, timestamp, nonce); return response; } public static string AESDecrypt(string content, string encodingAESKey, string appId) { byte[] key = Convert.FromBase64String(encodingAESKey + "="); byte[] iv = new byte[16]; Array.Copy(key, iv, 16); string[] arr = content.Split('\n'); string base64 = arr[1].Replace("<Encrypt><![CDATA[", "").Replace("]]></Encrypt>", ""); string signature = arr[2].Replace("<MsgSignature><![CDATA[", "").Replace("]]></MsgSignature>", ""); string timestamp = arr[3].Replace("<TimeStamp>", "").Replace("</TimeStamp>", ""); string nonce = arr[4].Replace("<Nonce><![CDATA[", "").Replace("]]></Nonce>", ""); string plainText = null; try { byte[] encrypted = Convert.FromBase64String(base64); using (var aes = new System.Security.Cryptography.AesCryptoServiceProvider()) { aes.KeySize = 256; aes.BlockSize = 128; aes.Key = key; aes.IV = iv; aes.Mode = System.Security.Cryptography.CipherMode.CBC; aes.Padding = System.Security.Cryptography.PaddingMode.None; using (var decryptor = aes.CreateDecryptor()) { byte[] decrypted = decryptor.TransformFinalBlock(encrypted, 0, encrypted.Length); plainText = Encoding.UTF8.GetString(PKCS7Unpadding(decrypted)); } } } catch { return null; } string hash = SHA1($"{token}\n{timestamp}\n{nonce}\n{plainText}"); if (hash == signature) { return plainText; } else { return null; } } private static byte[] PKCS7Padding(byte[] data) { int length = data.Length; int pad = 32 - length % 32; byte[] padding = new byte[pad]; for (int i = 0; i < pad; i++) { padding[i] = (byte)pad; } byte[] result = new byte[length + pad]; Array.Copy(data, result, length); Array.Copy(padding, 0, result, length, pad); return result; } private static byte[] PKCS7Unpadding(byte[] data) { int length = data.Length; int pad = (int)data[length - 1]; byte[] result = new byte[length - pad]; Array.Copy(data, result, length - pad); return result; } private static string SHA1(string data) { byte[] bytes = Encoding.UTF8.GetBytes(data); using (var sha1 = System.Security.Cryptography.SHA1.Create()) { byte[] hash = sha1.ComputeHash(bytes); return BitConverter.ToString(hash).Replace("-", "").ToLower(); } } } } ``` 上述代码中使用了微信加解密算法进行消息的加解密,同时使用了微信消息响应类进行消息的回复。需要注意的是,该代码只是一个简单的示例,实际开发中需要根据需求进行更详细的开发。同时,微信公众平台开发需要符合微信的开发规范和要求,需要进行相关的认证和申请,开发前需要进行充分了解和准备。

相关推荐

最新推荐

recommend-type

C# PC版微信消息监听自动回复的实现方法

在本文中,我们使用的是Windows的消息句柄来实现微信消息监听。通过Override DefWndProc方法,我们可以捕获微信客户端的消息,并对其进行处理。 protected override void DefWndProc(ref Message m) { switch (m....
recommend-type

C#微信小程序服务端获取用户解密信息实例代码

主要介绍了 C#微信小程序服务端获取用户解密信息实例代码的相关资料,需要的朋友可以参考下
recommend-type

C#实现微信结合百度api获取当前用户地理位置的方法

主要介绍了C#实现微信结合百度api获取当前用户地理位置的方法,结合实例形式分析了C#调用微信与百度API接口的相关操作技巧,需要的朋友可以参考下
recommend-type

基于C#实现微信支付宝扫码支付功能

本文将详细介绍如何使用C#实现微信和支付宝扫码支付功能,并提供了相关的代码实现。微信支付是一个非常流行的支付方式,许多企业都需要集成微信支付来满足业务需求。本文将分为两部分,第一部分介绍微信支付的实现,...
recommend-type

微信小程序支付之c#后台实现方法

微信小程序支付是指通过微信小程序实现的支付功能,而c#后台实现方法是指使用c#语言在服务器端实现微信小程序支付的后台处理逻辑。下面将详细介绍微信小程序支付之c#后台实现方法的相关知识点。 一、微信小程序支付...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。