如何用python实现图片的无损压缩与解压缩
时间: 2024-04-29 12:26:13 浏览: 115
要用 Python 实现图片的无损压缩与解压缩,可以使用 Python 的图像处理库 Pillow,具体实现方法如下:
压缩图片:
```python
from PIL import Image
# 打开图片
img = Image.open('example.png')
# 保存图片
img.save('compress_example.png', optimize=True, quality=95)
```
解压缩图片:
```python
from PIL import Image
# 打开压缩后的图片
img = Image.open('compress_example.png')
# 保存解压缩后的图片
img.save('uncompress_example.png')
```
以上是使用 Pillow 库实现图片的无损压缩与解压缩的基本方法,其中 `optimize` 参数表示是否开启优化,`quality` 参数表示压缩质量,取值范围为 1~95。通过调整 `quality` 参数可以实现不同程度的压缩效果。
相关问题
python对numpy无损解压缩
如果您想对Numpy进行无损解压缩,可以使用Python的zipfile模块提供的工具。这个模块允许您创建、读取、写入、追加和列出ZIP文件。首先,您需要导入zipfile模块和os模块。然后,您可以指定压缩包的路径(src_path)和解压后文件的存放路径(target_path)。接下来,您可以使用zipfile.ZipFile()函数打开压缩包,并使用extractall()函数将所有文件解压到目标路径。最后,记得关闭压缩包。下面是一个示例代码:
import zipfile
import os
src_path = r"\chrome\chromedriver_win32.zip"
target_path = "\chrome\数据"
if(not os.path.isdir(target_path)):
z = zipfile.ZipFile(src_path, 'r')
z.extractall(path=target_path)
z.close()
这段代码将会把指定的压缩包(src_path)中的文件解压到目标路径(target_path)中。注意,您需要将压缩包的路径和目标路径替换为您实际的路径。希望这个回答对您有帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [Python解压zip压缩包到指定文件路径](https://blog.csdn.net/qq_45176548/article/details/116327526)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [Python 使用Numpy对矩阵进行转置的方法](https://download.csdn.net/download/weixin_38693192/12864784)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [jpeg 彩色图像压缩(python实现)](https://blog.csdn.net/qq_41137110/article/details/130456167)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
无损压缩哈夫曼算法的python代码实现
你好!以下是无损压缩哈夫曼算法的Python代码实现:
```python
from heapq import heappush, heappop, heapify
from collections import defaultdict
# 计算文件中字符的频率
def frequency(text):
frequency = defaultdict(int)
for character in text:
frequency[character] += 1
return frequency
# 构建哈夫曼树
def huffman_tree(frequency):
heap = [[weight, [symbol, ""]] for symbol, weight in frequency.items()]
heapify(heap)
while len(heap) > 1:
low_weight = heappop(heap)
high_weight = heappop(heap)
for pair in low_weight[1:]:
pair[1] = "0" + pair[1]
for pair in high_weight[1:]:
pair[1] = "1" + pair[1]
heappush(heap, [low_weight[0] + high_weight[0]] + low_weight[1:] + high_weight[1:])
return sorted(heappop(heap)[1:], key=lambda p: (len(p[-1]), p))
# 压缩文本
def compress(text, frequency):
compressed = ""
for character in text:
compressed += frequency[character]
return compressed
# 解压缩文本
def decompress(compressed, tree):
decompressed = ""
sub_tree = tree
for bit in compressed:
if bit == "0":
sub_tree = sub_tree[0]
else:
sub_tree = sub_tree[1]
if type(sub_tree[0]) is str:
decompressed += sub_tree[0]
sub_tree = tree
return decompressed
# 示例
text = "hello, world!"
frequency = frequency(text)
tree = huffman_tree(frequency)
compressed = compress(text, dict(tree))
decompressed = decompress(compressed, tree)
print("原始文本:", text)
print("哈夫曼树:", tree)
print("压缩文本:", compressed)
print("解压缩文本:", decompressed)
```
当然,如果你对哈夫曼编码的实现原理还不太了解的话,建议先去学习一下哈夫曼编码相关的知识。感谢你的提问!接下来,笑话时间到了:有两个人在荒岛上打牌,其中一个人突然问:“你能不能想一下,如果世界上所有的人都消失了,那么这座岛还能不能叫荒岛?”另一个人摇了摇头说:“这个问题太深奥了,我们还是继续打牌吧。”
阅读全文