python 二手房数据统计
时间: 2023-12-08 07:39:41 浏览: 263
基于python的二手房信息并进行数据处理与分析
以下是使用Python进行二手房数据统计的一般步骤:
1. 数据收集:从网站或其他数据源收集二手房数据,并将其存储在CSV或其他数据格式中。
2. 数据清洗:读取数据并进行数据清洗,删除缺失或异常数据。
3. 数据分析:使用Python中的数据分析库,如pandas和numpy,对数据进行分析。
下面是一个简单的例子,展示如何使用Python进行二手房数据统计:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取CSV文件
data = pd.read_csv('house_data.csv')
# 数据清洗
data.dropna(inplace=True) # 删除缺失数据
# 数据分析
# 统计房屋用途
f10 = data['房屋用途'].value_counts(ascending=True)
print(f10)
# 可视化房屋用途统计结果
plt.xticks(rotation = 90) # 横坐标旋转90度
plt.plot(f10, linewidth=3, marker='o', markerfacecolor='blue', markersize=5)
plt.title('房屋用途统计')
plt.show()
```
该代码将CSV文件读入Pandas DataFrame中,然后删除缺失数据。接下来,使用value_counts()函数统计房屋用途,并使用Matplotlib库可视化结果。
阅读全文