DreamBooth 训练步骤和详细代码
时间: 2023-06-25 08:05:37 浏览: 661
dreambooth训练示例图片(dog)
DreamBooth 是一个基于深度学习的图像生成模型,可以用于生成逼真的人脸图像。其训练步骤和详细代码如下:
1. 数据集准备
首先需要准备一个人脸图像数据集,可以使用公开的数据集,如CelebA、LFW等。将数据集中的人脸图像进行预处理,如裁剪、缩放等处理,使其大小和质量一致。
2. 构建模型
DreamBooth 使用了DCGAN(Deep Convolutional Generative Adversarial Networks)作为模型基础,通过对生成器和判别器进行修改和调整,使其能够更好地生成逼真的人脸图像。具体的模型结构和超参数可以参考以下代码:
```python
import torch.nn as nn
import torch.nn.functional as F
class Generator(nn.Module):
def __init__(self, ngf, nz, nc):
super(Generator, self).__init__()
self.fc1 = nn.Linear(nz, ngf * 8 * 4 * 4)
self.conv1 = nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1)
self.conv2 = nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1)
self.conv3 = nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1)
self.conv4 = nn.ConvTranspose2d(ngf, nc, 4, 2, 1)
def forward(self, x):
x = self.fc1(x)
x = x.view(-1, 512, 4, 4)
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = torch.tanh(self.conv4(x))
return x
class Discriminator(nn.Module):
def __init__(self, ndf, nc):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(nc, ndf, 4, 2, 1)
self.conv2 = nn.Conv2d(ndf, ndf * 2, 4, 2, 1)
self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1)
self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1)
self.fc1 = nn.Linear(ndf * 8 * 4 * 4, 1)
def forward(self, x):
x = F.leaky_relu(self.conv1(x), 0.2, inplace=True)
x = F.leaky_relu(self.conv2(x), 0.2, inplace=True)
x = F.leaky_relu(self.conv3(x), 0.2, inplace=True)
x = F.leaky_relu(self.conv4(x), 0.2, inplace=True)
x = x.view(-1, 8192)
x = self.fc1(x)
return x
```
3. 训练模型
使用PyTorch框架进行训练,具体代码如下:
```python
import torch
import torchvision.transforms as transforms
import torchvision.datasets as dset
from torch.utils.data import DataLoader
from torch.autograd import Variable
def train(opt):
# 数据集准备
transform = transforms.Compose([
transforms.CenterCrop(opt.image_size),
transforms.Resize(opt.image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
dataset = dset.ImageFolder(root=opt.dataroot, transform=transform)
dataloader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
# 模型构建
G = Generator(opt.ngf, opt.nz, opt.nc)
D = Discriminator(opt.ndf, opt.nc)
G.cuda()
D.cuda()
# 损失函数和优化器
criterion = nn.BCEWithLogitsLoss()
optimizerG = torch.optim.Adam(G.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerD = torch.optim.Adam(D.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
# 训练过程
for epoch in range(opt.num_epochs):
for i, data in enumerate(dataloader, 0):
real, _ = data
batch_size = real.size(0)
real = Variable(real.cuda())
label = Variable(torch.ones(batch_size).cuda())
noise = Variable(torch.randn(batch_size, opt.nz).cuda())
# 训练生成器
optimizerG.zero_grad()
fake = G(noise)
output = D(fake)
lossG = criterion(output, label)
lossG.backward()
optimizerG.step()
# 训练判别器
optimizerD.zero_grad()
output = D(real)
lossD_real = criterion(output, label)
lossD_real.backward()
fake = G(noise).detach()
output = D(fake)
label.fill_(0)
lossD_fake = criterion(output, label)
lossD_fake.backward()
lossD = lossD_real + lossD_fake
optimizerD.step()
# 输出损失值
if i % 100 == 0:
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f'
% (epoch, opt.num_epochs, i, len(dataloader),
lossD.item(), lossG.item()))
# 保存模型
torch.save(G.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch))
torch.save(D.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch))
```
4. 生成图像
训练完成后,可以使用训练好的模型生成图像。具体代码如下:
```python
import torch
from PIL import Image
# 加载模型
G = Generator(ngf=64, nz=100, nc=3)
G.load_state_dict(torch.load('path_to_model'))
# 生成图像
noise = torch.randn(1, 100)
img = G(noise).cpu().detach().squeeze()
img = (img + 1) / 2.0 # 去归一化
img = transforms.ToPILImage()(img)
img.show()
```
以上就是DreamBooth的训练步骤和详细代码。需要注意的是,训练时间可能比较长,可以考虑使用GPU加速训练过程。
阅读全文