用python完成一份对jpg文件中人物实现年龄预测的代码
时间: 2023-05-30 07:05:54 浏览: 257
由于年龄预测需要大量的数据和算法支持,所以本代码只提供一个基本的思路,具体实现需要使用相关的库和算法。
1. 导入所需的库和模块
```python
import cv2
import numpy as np
import dlib
```
2. 加载人脸检测器和预训练的年龄预测模型
```python
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
age_model = cv2.dnn.readNetFromCaffe("age_deploy.prototxt", "age_net.caffemodel")
```
3. 定义函数来检测人脸并提取面部特征
```python
def get_face_features(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1)
if len(rects) == 0:
return None, None
shape = predictor(gray, rects[0])
face = np.zeros((68, 2), dtype=np.int)
for i in range(0, 68):
face[i] = (shape.part(i).x, shape.part(i).y)
return gray, face
```
4. 定义函数来预测人物年龄
```python
def predict_age(img):
gray, face = get_face_features(img)
if gray is None or face is None:
return None
# 确定面部区域
(x, y, w, h) = cv2.boundingRect(face)
# 处理面部图像
face_img = gray[y:y+h, x:x+w].copy()
face_img = cv2.resize(face_img, (224, 224))
face_img = cv2.cvtColor(face_img, cv2.COLOR_GRAY2RGB)
face_img = np.transpose(face_img, (2, 0, 1))
# 进行年龄预测
age_model.setInput(cv2.dnn.blobFromImage(face_img))
age_preds = age_model.forward()
age = int(age_preds[0].dot(np.arange(0, 101).reshape(101, 1)).flatten()[0])
return age
```
5. 加载测试图像并进行预测
```python
img = cv2.imread("test.jpg")
age = predict_age(img)
print("Predicted age:", age)
```
注意:以上代码仅提供一个基本的思路,具体实现需要使用相关的库和算法,如dlib、OpenCV、Caffe等。
阅读全文