pycharm实现手写数字识别
时间: 2023-11-27 17:48:17 浏览: 130
数字手写识别_基于Python的手写数字识别_手写数字识别_
5星 · 资源好评率100%
以下是使用Pycharm实现手写数字识别的步骤:
1.安装Python3.X 64bit版本和Pycharm IDE。
2.在Pycharm中创建一个新项目,选择Python解释器。
3.在项目中创建一个新的Python文件,将以下代码复制并粘贴到文件中:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# 定义超参数
input_size = 784 # 输入大小为28x28
hidden_size = 500 # 隐藏层大小
num_classes = 10 # 输出类别为10
num_epochs = 5 # 训练次数
batch_size = 100 # 批处理大小
learning_rate = 0.001 # 学习率
# 加载MNIST数据集
train_dataset = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
# 加载数据集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# 定义神经网络模型
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
net = Net(input_size, hidden_size, num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28 * 28))
labels = Variable(labels)
optimizer.zero_grad()
outputs = net(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
% (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.data[0]))
# 测试模型
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28 * 28))
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
4.运行代码,等待训练和测试完成。
5.最后,你将得到一个准确率的输出结果。
阅读全文