请帮我写一个基于ros平台的sbgm双目识别代码
时间: 2023-08-28 21:15:40 浏览: 118
基于ros实现的语音识别源代码(采用python与科大讯飞语音听写api)+项目使用说明.zip
好的,以下是一个基于ROS平台的SBGM双目视觉配准的代码示例:
```python
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import cv2
import numpy as np
import os
# SBGM算法参数设置
saliencyThres = 100
saliencyThresMax = 255
saliencyType = cv2.SALIENCY_GMR
sbgm = cv2.createStereoSGBM(minDisparity=0, numDisparities=64, blockSize=11)
# ROS节点初始化
rospy.init_node('sbmg_stereo_matching', anonymous=True)
# ROS图像转OpenCV图像的转换器
bridge = CvBridge()
# 订阅左右两个相机的图像话题
left_image_sub = rospy.Subscriber('/left/image_raw', Image, left_image_callback)
right_image_sub = rospy.Subscriber('/right/image_raw', Image, right_image_callback)
# 左相机图像回调函数
def left_image_callback(msg):
# 将ROS图像转换为OpenCV图像
try:
left_image = bridge.imgmsg_to_cv2(msg, "bgr8")
except CvBridgeError as e:
print(e)
# 进行图像处理和视觉配准
register_images(left_image, right_image)
# 右相机图像回调函数
def right_image_callback(msg):
# 将ROS图像转换为OpenCV图像
try:
right_image = bridge.imgmsg_to_cv2(msg, "bgr8")
except CvBridgeError as e:
print(e)
# 进行图像处理和视觉配准
register_images(left_image, right_image)
# 图像处理和视觉配准函数
def register_images(left_image, right_image):
# 对左右两幅图像进行灰度化和显著性检测
saliency = cv2.saliency.StaticSaliencySpectralResidual_create()
gray_left = cv2.cvtColor(left_image, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(right_image, cv2.COLOR_BGR2GRAY)
(success, saliencyMap_left) = saliency.computeSaliency(gray_left)
(success, saliencyMap_right) = saliency.computeSaliency(gray_right)
saliencyMap_left = (saliencyMap_left * 255).astype("uint8")
saliencyMap_right = (saliencyMap_right * 255).astype("uint8")
# 通过阈值处理得到显著性二值图像
_, saliencyMap_left = cv2.threshold(saliencyMap_left, saliencyThres, saliencyThresMax, cv2.THRESH_BINARY)
_, saliencyMap_right = cv2.threshold(saliencyMap_right, saliencyThres, saliencyThresMax, cv2.THRESH_BINARY)
# 提取显著性区域的轮廓并进行筛选
contours_left, _ = cv2.findContours(saliencyMap_left, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours_right, _ = cv2.findContours(saliencyMap_right, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours_left = filter_contours(contours_left)
contours_right = filter_contours(contours_right)
# 提取显著性区域的特征点
keypoints_left = extract_keypoints(gray_left, contours_left)
keypoints_right = extract_keypoints(gray_right, contours_right)
# 进行关键点匹配和视觉配准
matches = match_keypoints(keypoints_left, keypoints_right)
if len(matches) > 10:
points_left = np.float32([keypoints_left[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
points_right = np.float32([keypoints_right[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
disparity = sbgm.compute(gray_left, gray_right).astype(np.float32) / 16.0
disparity = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
points_left = np.int32(points_left)
points_right = np.int32(points_right)
result = cv2.drawContours(left_image, contours_left, -1, (0, 255, 0), 3)
result = cv2.drawContours(right_image, contours_right, -1, (0, 255, 0), 3)
result = cv2.drawMatches(left_image, keypoints_left, right_image, keypoints_right, matches, None, flags=2)
cv2.imshow("result", result)
cv2.waitKey(1)
# 过滤掉面积小于一定值的轮廓
def filter_contours(contours, area_threshold=500):
filtered_contours = []
for contour in contours:
if cv2.contourArea(contour) > area_threshold:
filtered_contours.append(contour)
return filtered_contours
# 提取特征点
def extract_keypoints(image, contours):
keypoints = []
for contour in contours:
(x, y, w, h) = cv2.boundingRect(contour)
roi = image[y:y+h, x:x+w]
detector = cv2.xfeatures2d.SIFT_create()
kp = detector.detect(roi)
for k in kp:
k.pt = (k.pt[0] + x, k.pt[1] + y)
keypoints.extend(kp)
return keypoints
# 匹配特征点
def match_keypoints(keypoints_left, keypoints_right):
matcher = cv2.DescriptorMatcher_create("BruteForce")
descriptor_left = cv2.xfeatures2d.SIFT_create()
descriptor_right = cv2.xfeatures2d.SIFT_create()
(kps_left, features_left) = descriptor_left.compute(gray_left, keypoints_left)
(kps_right, features_right) = descriptor_right.compute(gray_right, keypoints_right)
matches = matcher.match(features_left, features_right, None)
matches = sorted(matches, key=lambda x: x.distance)
return matches
rospy.spin()
cv2.destroyAllWindows()
```
需要注意的是,此代码只是一个示例,可能需要根据具体应用场景进行调整和优化。
阅读全文