docker 安装elasticsearch8.1.9

时间: 2023-03-20 09:02:27 浏览: 55
好的,关于docker安装elasticsearch8.1.9的问题,可以按照以下步骤进行操作: 1. 在服务器上安装docker和docker-compose。 2. 在docker-compose.yml文件中添加以下内容: ```yaml version: '3' services: elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:8.1.9 container_name: elasticsearch environment: - discovery.type=single-node ports: - "9200:9200" - "9300:9300" ``` 3. 运行以下命令启动elasticsearch容器: ```bash docker-compose up -d ``` 4. 可以使用以下命令检查elasticsearch容器是否正在运行: ```bash docker ps ``` 5. 如果一切正常,可以通过访问`http://localhost:9200`来验证elasticsearch是否已经安装成功。 希望这个回答能够帮到你。
相关问题

docker 安装elasticsearch安装

Docker是一种容器化平台,可以方便地实现应用程序的打包、发布和运行。要在Docker中安装Elasticsearch,可以按照以下步骤进行操作: 1. 首先,确保您已经在系统中安装了Docker。可以通过运行以下命令来检查Docker是否已安装: ``` docker --version ``` 2. 在安装Elasticsearch之前,我们需要创建一个Docker网络。运行以下命令创建网络: ``` docker network create elastic_network ``` 3. 下载Elasticsearch的Docker镜像。运行以下命令: ``` docker pull docker.elastic.co/elasticsearch/elasticsearch:7.10.2 ``` 4. 创建并运行Elasticsearch容器。运行以下命令: ``` docker run -d --name elasticsearch --net elastic_network -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:7.10.2 ``` 这将创建一个名为elasticsearch的容器,并将其连接到之前创建的elastic_network网络。同时,9200端口将用于HTTP访问Elasticsearch,9300端口将用于节点间通信。 5. 等待片刻,Elasticsearch容器将启动并运行。您可以通过运行以下命令来检查其状态: ``` docker ps ``` 如果状态为Up,则表示Elasticsearch已成功安装。 现在,您已经在Docker中安装了Elasticsearch。您可以通过访问http://localhost:9200来验证Elasticsearch是否正在运行。

docker 安装elasticsearch

好的,以下是使用Docker安装Elasticsearch的步骤: 1. 确保您已经安装了Docker和Docker Compose。如果您还没有安装,请按照官方文档进行安装。 2. 创建一个新的目录,例如`elasticsearch`,用于存储Elasticsearch配置和数据。 3. 在该目录中创建一个名为`docker-compose.yml`的文件,并将以下内容添加到该文件中: ``` version: '3' services: elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.18.0 container_name: elasticsearch environment: - node.name=elasticsearch - discovery.type=single-node ulimits: memlock: soft: -1 hard: -1 volumes: - ./data:/usr/share/elasticsearch/data ports: - 9200:9200 - 9300:9300 ``` 此文件定义了一个名为`elasticsearch`的Docker服务。我们使用7.18.0版本的Elasticsearch镜像,将容器命名为`elasticsearch`,并将环境变量设置为`node.name`和`discovery.type`以使其成为单节点集群。我们还将内存锁定限制设置为无限制,并将Elasticsearch数据存储在我们创建的名为`data`的本地目录中。最后,我们将容器的端口映射到主机的9200和9300端口,以便我们可以通过HTTP和Transport协议访问Elasticsearch。 4. 在终端中导航到`elasticsearch`目录,并运行以下命令以启动Elasticsearch服务: ``` docker-compose up -d ``` 这将使用我们在`docker-compose.yml`文件中定义的配置启动一个名为`elasticsearch`的Docker容器。 5. 要验证Elasticsearch是否正在运行,请运行以下命令: ``` curl -X GET "localhost:9200" ``` 如果您看到Elasticsearch的版本信息,则表示它已成功安装并正在运行。 现在您已经成功地使用Docker安装了Elasticsearch,可以开始在其上构建应用程序或进行数据分析。

相关推荐

要在Docker中安装Elasticsearch和Kibana,可以按照以下步骤进行操作: 1. 首先,确保已经安装了Docker。您可以通过在终端或命令提示符中运行以下命令来检查是否已安装: docker --version 如果您看到了Docker的版本号,那么说明您已经安装了Docker。 2. 接下来,我们将使用Docker Compose来管理Elasticsearch和Kibana容器的部署。创建一个名为docker-compose.yml的文件,并将以下内容添加到文件中: yaml version: '3' services: elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.10.2 container_name: elasticsearch environment: - discovery.type=single-node ports: - 9200:9200 - 9300:9300 kibana: image: docker.elastic.co/kibana/kibana:7.10.2 container_name: kibana ports: - 5601:5601 depends_on: - elasticsearch 这将创建两个服务:Elasticsearch和Kibana。Elasticsearch服务将在9200和9300端口上暴露,而Kibana服务将在5601端口上暴露。 3. 保存并关闭docker-compose.yml文件。然后,在终端或命令提示符中,导航到包含该文件的目录,并运行以下命令来启动Elasticsearch和Kibana容器: docker-compose up -d 这将使用Docker Compose根据docker-compose.yml文件中的配置启动Elasticsearch和Kibana容器。-d选项将容器置于后台运行。 4. 等待一段时间,直到容器成功启动。您可以通过运行以下命令来检查容器的状态: docker-compose ps 如果您看到了elasticsearch和kibana容器正在运行,则表示安装成功。 5. 现在,您可以通过浏览器访问Kibana的Web界面,地址为http://localhost:5601。在Kibana中,您可以进行各种操作,如索引数据、创建可视化仪表板等。 请注意,以上步骤假设您已经具备基本的Docker和容器管理知识。如果您遇到任何问题,请参考Docker和Docker Compose的官方文档以获得更多详细信息。
要安装Elasticsearch,你可以按照以下步骤进行操作: 1. 首先,创建并启动一个Elasticsearch容器。你可以使用以下命令: docker run --name=es -p 9200:9200 -p 9300:9300 \ -e "discovery.type=single-node" \ -v $PWD/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \ -v $PWD/data:/usr/share/elasticsearch/data \ -v $PWD/logs:/usr/share/elasticsearch/logs \ -v $PWD/plugins:/usr/share/elasticsearch/plugins \ -d elasticsearch:7.12.1 这个命令会创建一个名为"es"的容器,并将Elasticsearch的端口映射到主机的9200和9300端口。同时,它会挂载配置文件、数据、日志和插件目录到主机上,以便进行配置和管理。\[3\] 2. 接下来,创建并启动一个Kibana容器,用于可视化和管理Elasticsearch。你可以使用以下命令: docker run -d -p 5601:5601 --name kibana --link elasticsearch:elasticsearch docker.io/kibana:7.12.1 这个命令会创建一个名为"kibana"的容器,并将Kibana的端口映射到主机的5601端口。同时,它会将Kibana与之前创建的Elasticsearch容器进行链接,以便进行通信和数据交互。\[1\] 3. 最后,安装Elasticsearch的插件。你可以使用以下命令: elasticsearch-plugin install file:/usr/share/elasticsearch/elasticsearch-analysis-ik-7.12.1.zip 这个命令会安装名为"elasticsearch-analysis-ik"的插件,该插件用于中文分词功能。你需要将插件文件路径替换为你实际下载的插件文件路径。\[2\] 通过按照以上步骤进行操作,你就可以成功安装和配置Elasticsearch,并使用Kibana进行可视化和管理了。 #### 引用[.reference_title] - *1* *2* *3* [Docker安装Elasticsearch及相关插件详细步骤,全程亲测避坑](https://blog.csdn.net/secretdaixin/article/details/128201184)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
要在Docker中安装elasticsearch-oss,您可以按照以下步骤进行操作: 1. 下载elasticsearch-oss压缩包: 在终端中使用wget命令下载elasticsearch-oss的压缩包。您可以使用以下命令下载最新版本的elasticsearch-oss: wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.10.1/elasticsearch-analysis-ik-7.10.1.zip 2. 将压缩包移动到容器中: 使用docker cp命令将下载的压缩包复制到elasticsearch容器中的插件目录。请确保容器正在运行并替换elasticsearch和/usr/share/elasticsearch/plugins为您的容器和插件目录的实际路径: docker cp elasticsearch-analysis-ik-7.10.1.zip elasticsearch:/usr/share/elasticsearch/plugins 3. 运行elasticsearch容器: 使用docker run命令运行elasticsearch容器,并指定elasticsearch-oss的版本号、端口等参数。以下是一个示例命令: docker run --name elasticsearch -d -e ES_JAVA_OPTS="-Xms512m -Xmx512m" -e "discovery.type=single-node" -p 9200:9200 -p 9300:9300 elasticsearch:7.10.1 4. 验证安装: 使用curl或浏览器访问http://localhost:9200来验证安装是否成功。如果成功,您将看到elasticsearch的信息。 请注意,以上步骤仅适用于elasticsearch-oss的安装。如果您需要安装其他版本或使用其他配置,请参考elasticsearch的官方文档或相关资源。123 #### 引用[.reference_title] - *1* *2* [docker安装elasticsearch(最最最最详细版)](https://blog.csdn.net/weixin_42741805/article/details/117513084)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [docker for windows--docker-compose 安装elasticsearch + kibana 6.8.x版本](https://blog.csdn.net/penriver/article/details/126687172)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
可以回答这个问题。Docker 安装 Elasticsearch 集群的步骤如下: 1. 首先,需要在 Docker 中安装 Elasticsearch 镜像。可以使用以下命令: docker pull elasticsearch:7.9.3 2. 接着,需要创建一个 Docker 网络,用于 Elasticsearch 集群的通信。可以使用以下命令: docker network create esnet 3. 然后,需要创建 Elasticsearch 集群的配置文件。可以使用以下命令: mkdir -p ~/esdata/node1 ~/esdata/node2 ~/esdata/node3 touch ~/esdata/node1/elasticsearch.yml ~/esdata/node2/elasticsearch.yml ~/esdata/node3/elasticsearch.yml 4. 编辑每个节点的配置文件,将以下内容添加到每个配置文件中: cluster.name: my-cluster node.name: node-1 # 每个节点的名称不同 network.host: ... discovery.seed_hosts: ["node-1", "node-2", "node-3"] cluster.initial_master_nodes: ["node-1", "node-2", "node-3"] 5. 最后,启动 Elasticsearch 集群。可以使用以下命令: docker run -d --name=node1 --net=esnet -p 920:920 -p 930:930 -v ~/esdata/node1:/usr/share/elasticsearch/data -e "discovery.type=single-node" -e "node.name=node-1" elasticsearch:7.9.3 docker run -d --name=node2 --net=esnet -v ~/esdata/node2:/usr/share/elasticsearch/data -e "discovery.seed_hosts=node1,node2,node3" -e "node.name=node-2" elasticsearch:7.9.3 docker run -d --name=node3 --net=esnet -v ~/esdata/node3:/usr/share/elasticsearch/data -e "discovery.seed_hosts=node1,node2,node3" -e "node.name=node-3" elasticsearch:7.9.3 注意:以上命令中的 IP 地址和端口号需要根据实际情况进行修改。

最新推荐

docker安装elasticsearch8

elasticsearch:8.2.0 docker安装,用户名密码设置,POSTMAN请求证书设置

linux环境部署及docker安装redis的方法

主要介绍了linux环境部署及docker安装redis的方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下

802.11be draft 4.0 wifi7standard

802.11be draft 4.0 wifi7standard

哈希排序等相关算法知识

哈希排序等相关算法知识

混合神经编码调制的设计和训练方法

可在www.sciencedirect.com在线获取ScienceDirectICTExpress 8(2022)25www.elsevier.com/locate/icte混合神经编码调制:设计和训练方法Sung Hoon Lima,Jiyong Hana,Wonjong Noha,Yujae Songb,Sang-WoonJeonc,a大韩民国春川,翰林大学软件学院b韩国龟尾国立技术学院计算机软件工程系,邮编39177c大韩民国安山汉阳大学电子电气工程系接收日期:2021年9月30日;接收日期:2021年12月31日;接受日期:2022年1月30日2022年2月9日在线发布摘要提出了一种由内码和外码组成的混合编码调制方案。外码可以是任何标准的二进制具有有效软解码能力的线性码(例如,低密度奇偶校验(LDPC)码)。内部代码使用深度神经网络(DNN)设计,该深度神经网络获取信道编码比特并输出调制符号。为了训练DNN,我们建议使用损失函数,它是受广义互信息的启发。所得到的星座图被示出优于具有5G标准LDPC码的调制�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

帮我用C++和Qt写一个m*n的矩阵最小路径和可视化,要求用格子展示,最小路径采用其它的颜色标记

好的,以下是一个基本的实现: 1. 首先需要定义一个矩阵类来存储矩阵数据和计算最小路径和。 ```c++ class Matrix{ public: Matrix(int rows, int cols); ~Matrix(); void setValue(int i, int j, int value); //设置元素的值 int getValue(int i, int j); //获取元素的值 int getRows(); //获取行数 int getCols(); //获取列数 int getMinPathSum(); //获取最

基于android的视频播放器的设计与实现--大学毕业论文.doc

基于android的视频播放器的设计与实现--大学毕业论文.doc

"基于自定义RC-NN的优化云计算网络入侵检测"

⃝可在www.sciencedirect.com在线获取ScienceDirectICTExpress 7(2021)512www.elsevier.com/locate/icte基于自定义RC-NN和优化的云计算网络入侵检测T.蒂拉加姆河ArunaVelTech Rangarajan博士Sagunthala研发科学技术研究所,印度泰米尔纳德邦钦奈接收日期:2020年8月20日;接收日期:2020年10月12日;接受日期:2021年4月20日2021年5月5日网上发售摘要入侵检测是保证信息安全的重要手段,其关键技术是对各种攻击进行准确分类。入侵检测系统(IDS)被认为是云网络环境中的一个重要安全问题。在本文中,IDS给出了一个创新的优化定制的RC-NN(递归卷积神经网络),提出了入侵检测与蚁狮优化算法的基础上。通过这种方法,CNN(卷积神经网络)与LSTM(长短期记忆)混合。因此,利用云的网络层识别的所有攻击被有效地分类。下面所示的实验结果描述了具有高精度的IDS分类模型的呈现,从而�

Shell脚本中的并发编程和多线程操作

# 一、引言 ## 1.1 介绍Shell脚本中并发编程和多线程操作的概念与意义 在Shell编程中,并发编程和多线程操作是指同时执行多个任务或操作,这在处理大规模数据和提高程序执行效率方面非常重要。通过并发编程和多线程操作,可以实现任务的同时执行,充分利用计算资源,加快程序运行速度。在Shell脚本中,也可以利用并发编程和多线程操作来实现类似的效果,提高脚本的执行效率。 ## 1.2 探讨并发编程和多线程在IT领域的应用场景 在IT领域,并发编程和多线程操作被广泛应用于各种场景,包括但不限于: - Web服务器中处理并发请求 - 数据库操作中的并发访问和事务处理 - 大数据处理和分析