帮我用代码写一个vit模型将一个图片集进行分类
时间: 2023-03-30 16:01:32 浏览: 132
好的,以下是使用 Python 代码实现 VIT 模型对图片集进行分类的示例:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
# 定义 VIT 模型
class VIT(nn.Module):
def __init__(self, num_classes=10):
super(VIT, self).__init__()
self.transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=768, nhead=12), num_layers=12)
self.fc = nn.Linear(768, num_classes)
def forward(self, x):
x = self.transformer(x)
x = x.mean(dim=1)
x = self.fc(x)
return x
# 加载数据集
train_dataset = datasets.ImageFolder(root='path/to/train', transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[.485, .456, .406], std=[.229, .224, .225])
]))
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 初始化模型和优化器
model = VIT(num_classes=10)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
# 训练模型
for epoch in range(10):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = nn.CrossEntropyLoss()(outputs, labels)
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, loss.item()))
# 对测试集进行预测
test_dataset = datasets.ImageFolder(root='path/to/test', transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[.485, .456, .406], std=[.229, .224, .225])
]))
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
model.eval()
with torch.no_grad():
correct =
total =
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size()
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
请注意,这只是一个示例代码,实际应用中需要根据具体情况进行修改和调整。
阅读全文