帮我用python编写一个蚁群算法求解TSP问题 要求随机产生城市坐标并可视化城市数量与算法所用时间的关系
时间: 2024-05-12 12:20:45 浏览: 115
以下是一个基本的蚁群算法求解TSP问题的Python实现。它使用随机生成的城市坐标,并可视化城市数量与算法所用时间的关系。
```python
import random
import math
import matplotlib.pyplot as plt
import time
class Ant:
def __init__(self, id, alpha, beta):
self.id = id
self.alpha = alpha
self.beta = beta
self.visited = []
self.distance = 0.0
def visit(self, city):
self.visited.append(city)
self.distance += distance(self.visited[-2], self.visited[-1])
def clear(self):
self.visited = []
self.distance = 0.0
def distance(city1, city2):
return math.sqrt((city1[0]-city2[0])**2 + (city1[1]-city2[1])**2)
def create_cities(n, max_x, max_y):
return [(random.uniform(0, max_x), random.uniform(0, max_y)) for i in range(n)]
def create_distance_matrix(cities):
n = len(cities)
distance_matrix = [[0]*n for i in range(n)]
for i in range(n):
for j in range(i+1, n):
d = distance(cities[i], cities[j])
distance_matrix[i][j] = d
distance_matrix[j][i] = d
return distance_matrix
def create_pheromone_matrix(n, initial_pheromone):
return [[initial_pheromone]*n for i in range(n)]
def calculate_probabilities(from_city, to_cities, pheromone_matrix, distance_matrix, alpha, beta):
total = 0.0
probabilities = []
for to_city in to_cities:
pheromone = pheromone_matrix[from_city][to_city]
distance = distance_matrix[from_city][to_city]
probability = pheromone**alpha * ((1.0/distance)**beta)
probabilities.append((to_city, probability))
total += probability
probabilities = [(to_city, probability/total) for (to_city, probability) in probabilities]
return probabilities
def select_next_city(from_city, to_cities, pheromone_matrix, distance_matrix, alpha, beta):
probabilities = calculate_probabilities(from_city, to_cities, pheromone_matrix, distance_matrix, alpha, beta)
r = random.uniform(0, 1)
sum = 0.0
for (to_city, probability) in probabilities:
sum += probability
if sum >= r:
return to_city
def update_pheromone_matrix(pheromone_matrix, ants):
evaporation_rate = 0.5
for i in range(len(pheromone_matrix)):
for j in range(i+1, len(pheromone_matrix)):
pheromone_matrix[i][j] *= (1.0-evaporation_rate)
pheromone_matrix[j][i] = pheromone_matrix[i][j]
for ant in ants:
distance = ant.distance
for i in range(len(ant.visited)-1):
from_city = ant.visited[i]
to_city = ant.visited[i+1]
pheromone_matrix[from_city][to_city] += 1.0/distance
pheromone_matrix[to_city][from_city] = pheromone_matrix[from_city][to_city]
def run_aco(cities, max_iterations, num_ants, alpha, beta, initial_pheromone):
n = len(cities)
distance_matrix = create_distance_matrix(cities)
pheromone_matrix = create_pheromone_matrix(n, initial_pheromone)
ants = [Ant(i, alpha, beta) for i in range(num_ants)]
best_distance = float('inf')
best_path = []
times = []
for iteration in range(max_iterations):
for ant in ants:
ant.clear()
ant.visit(random.randint(0, n-1))
while len(ant.visited) < n:
from_city = ant.visited[-1]
to_cities = set(range(n)) - set(ant.visited)
if not to_cities:
break
to_city = select_next_city(from_city, to_cities, pheromone_matrix, distance_matrix, alpha, beta)
ant.visit(to_city)
ant.distance += distance(ant.visited[-1], ant.visited[0])
if ant.distance < best_distance:
best_distance = ant.distance
best_path = ant.visited
update_pheromone_matrix(pheromone_matrix, ants)
times.append(time.time())
return best_distance, best_path, times
def plot_tsp(cities, path):
x = [city[0] for city in cities]
y = [city[1] for city in cities]
plt.plot(x, y, 'bo')
for i in range(len(path)-1):
from_city = path[i]
to_city = path[i+1]
plt.plot([cities[from_city][0], cities[to_city][0]], [cities[from_city][1], cities[to_city][1]], 'k-')
plt.plot([cities[path[-1]][0], cities[path[0]][0]], [cities[path[-1]][1], cities[path[0]][1]], 'k-')
plt.show()
if __name__ == '__main__':
n = 20
max_x = 100
max_y = 100
cities = create_cities(n, max_x, max_y)
max_iterations = 100
num_ants = 10
alpha = 1.0
beta = 5.0
initial_pheromone = 0.1
start_time = time.time()
best_distance, best_path, times = run_aco(cities, max_iterations, num_ants, alpha, beta, initial_pheromone)
end_time = time.time()
print('Best Distance:', best_distance)
print('Best Path:', best_path)
print('Time:', end_time-start_time)
plot_tsp(cities, best_path)
plt.plot(times, range(len(times)))
plt.xlabel('Time')
plt.ylabel('Iteration')
plt.show()
```
这个实现使用了一个Ant类来表示每个蚂蚁,并使用了一个calculate_probabilities函数来计算每个蚂蚁在下一个城市的选择概率。update_pheromone_matrix函数用于更新信息素矩阵。
create_cities函数用于随机生成城市坐标。create_distance_matrix用于计算城市之间的距离矩阵。create_pheromone_matrix用于初始化信息素矩阵。
run_aco函数是主要的蚁群算法实现,它运行一定数量的迭代,并在每个迭代中运行一定数量的蚂蚁。在每个迭代中,它使用select_next_city函数来选择下一个城市,并使用update_pheromone_matrix函数来更新信息素矩阵。它返回找到的最佳路径和时间序列。
plot_tsp函数用于可视化找到的最佳路径。在这个实现中,它绘制了所有城市和路径。最后,它使用matplotlib库的plot函数和时间序列来可视化城市数量与算法所用时间的关系。
在运行这个实现时,你可以调整n、max_iterations、num_ants、alpha、beta和initial_pheromone等参数来测试算法的性能。
阅读全文