temporal difference learning
时间: 2023-04-12 12:03:37 浏览: 122
时序差分学习(Temporal Difference Learning)是一种强化学习算法,它通过比较当前状态下的估计值和下一个状态的估计值来更新价值函数。这种方法可以在不需要完整的环境模型的情况下进行学习,因此被广泛应用于机器人控制、游戏智能等领域。
相关问题
time difference learning
Time difference learning is a type of reinforcement learning method in which an agent learns from the differences between predicted and actual outcomes over time. This approach is based on the idea that the agent can update its predictions based on the temporal difference between the expected and actual rewards it receives.
The time difference learning algorithm is commonly used in the context of Markov decision processes (MDPs) and is particularly useful for problems with delayed rewards. In these cases, the agent must learn to balance immediate rewards with long-term goals, which can be challenging without a mechanism for temporal difference learning.
Overall, time difference learning is a powerful tool for developing reinforcement learning algorithms that can learn from experience over time and make informed decisions based on past outcomes.
def __init__(self, sess, state_dim, learning_rate): self.sess = sess self.s_dim = state_dim self.lr_rate = learning_rate # Create the critic network self.inputs, self.out = self.create_critic_network() # Get all network parameters self.network_params = \ tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, scope='critic') # Set all network parameters self.input_network_params = [] for param in self.network_params: self.input_network_params.append( tf.compat.v1.placeholder(tf.float32, shape=param.get_shape())) self.set_network_params_op = [] for idx, param in enumerate(self.input_network_params): self.set_network_params_op.append(self.network_params[idx].assign(param)) # Network target目标 V(s) self.td_target = tf.compat.v1.placeholder(tf.float32, [None, 1]) # Temporal Difference, will also be weights for actor_gradients时间差异,也将是actor_gradients的权重 self.td = tf.subtract(self.td_target, self.out) # Mean square error均方误差 self.loss = tflearn.mean_square(self.td_target, self.out) # Compute critic gradient计算临界梯度 self.critic_gradients = tf.gradients(self.loss, self.network_params) # Optimization Op self.optimize = tf.compat.v1.train.RMSPropOptimizer(self.lr_rate). \ apply_gradients(zip(self.critic_gradients, self.network_params))请对这段代码每句进行注释
# 定义一个类,表示 Critic 网络
class CriticNetwork(object):
def __init__(self, sess, state_dim, learning_rate):
# 初始化 Critic 网络的一些参数
self.sess = sess
self.s_dim = state_dim
self.lr_rate = learning_rate
# 创建 Critic 网络
self.inputs, self.out = self.create_critic_network()
# 获取 Critic 网络中所有的参数
self.network_params = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, scope='critic')
# 定义一个占位符,表示 Critic 网络的输入参数
self.input_network_params = []
for param in self.network_params:
self.input_network_params.append(tf.compat.v1.placeholder(tf.float32, shape=param.get_shape()))
# 定义一个操作,用于设置 Critic 网络的所有参数
self.set_network_params_op = []
for idx, param in enumerate(self.input_network_params):
self.set_network_params_op.append(self.network_params[idx].assign(param))
# 定义一个占位符,表示 Critic 网络的目标输出
self.td_target = tf.compat.v1.placeholder(tf.float32, [None, 1])
# 计算 Critic 网络的 Temporal Difference
self.td = tf.subtract(self.td_target, self.out)
# 定义 Critic 网络的损失函数,使用均方误差
self.loss = tflearn.mean_square(self.td_target, self.out)
# 计算 Critic 网络的梯度
self.critic_gradients = tf.gradients(self.loss, self.network_params)
# 定义 Critic 网络的优化器
self.optimize = tf.compat.v1.train.RMSPropOptimizer(self.lr_rate).apply_gradients(zip(self.critic_gradients, self.network_params))
阅读全文